Mavzu: hosila yordamida funksiyani tekshirish va grafigini yasash
Download 109 Kb.
|
HOSILA YORDAMIDA FUNKSIYANI TEKSHIRISH VA GRAFIGINI YASASH.
MAVZU:HOSILA YORDAMIDA FUNKSIYANI TEKSHIRISH VA GRAFIGINI YASASH.Reja: 1.Hosila yordamida funksiyani ekstremumda tekshirish. 2. Hosila yordamida funksiyani grafigini yasash. 3. Aniq integral yordamida yassi shaklni yuzini hisoblash4.Egri chiziq yoyi uzunligini hisoblash 5.Hajmlarni hisoblash Funksiyani tekshirish va grafigini yasash quyidagi umumiy chizma bo‘yicha bajariladi: 1) Funksiyaning aniqlanish sohasi topiladi. 2) Funksiya juft , toqligi yoki juft ham emas, toq ham emasligi aniqlanadi. Agar funksiyaning juft yoki toqligi aniqlansa, funksiyani musbat yoki manfiy haqiqiy sonlar yarim o‘qida tekshirish yetarli. Agar funksiya juft bo‘lsa, bu funksiyaning grafigi Oy o‘qiga nisbatan simmetrik, toq bo‘lsa koordinata boshiga nisbatan simmetrik bo‘ladi. 3) Davriy yoki davriy emasligi aniqlanadi. Davriy funksiyani bir davr oralag‘ida tekshirish yetarli. 4) Funksiya grafigining koordinata o‘qlari bilan kesishish nuqtalari topiladi. Ox o‘qi bilan kesishish nuqtalari chizma, Oy o‘qi bilan kesishish nyqtalari esa chizmani yechish bilan topiladi. Funksiya grafigining asimptotalari quriladi. 5) Uzilish nuqtalari aniqlanadi va ularning atrofida funksiyaning o‘zini tutishi tekshiriladi. Funksiyanig og’ma asimptotasi ( ) tekshiriladi 6) Funksiyaning o‘sish va kamayish intervallari, maksimum va minimum nyqtalari topiladi. 7) Funksiya grafigining qavariqligi va egilish nuqtalari topiladi. 8) Yig‘ilgan ma’lumotlar jadval ko‘rinishida tuziladi. 9) Funksiya grafigi yasaladi. 27.1. Quyidagi berilgan funksiyani tekshirib, grafigini chizing: berilgan funksiya D={(-∞;-1) (-1;1) (1;+ ∞)} to‘plamda aniqlangan. Bu funksiya uchun f(-x)=f(x) bo‘lganidan u juftdir va uni [0;+∞] oraliqda tekshirish kifoya. Funksiyaning birinchi va ikkinchi tartibli hosilalari: Birinchi tartibli hosila [0;+∞) oraliqning x=1 nuqtasidan boshqa barcha nuqtalarida aniqlangan va x=0 nuqtada nolga aylanadi. Ikkinchi tartibli hosilaning x=0 nuqtadagi qiymati ?``(0) =-4<0, shuning uchun ?(x) funksiya x=0 nuqtada maksimumga ega va bu maksimum qiymat f(0)= -1 bo‘ ladi. Endi (0;1) va (1;+ ∞) da ?`(x)<0 bo‘lganidan bu to‘plamda ?(x) ning kamayuvchiligi kelib chiqadi. So‘ngra: bo‘lgani uchun x=±1 (funksiyaning ikkinchi tur uzilish nuqtalari) to‘g‘ri chiziqlar vertical asimptotalar ekanligini va limitlarga ko‘ra y=1 gorizontal to‘g‘ri chiziq ?(x) funksiya grafigining asimptotasi ekanligini hosil qilamiz. Endi 1+3x2=0 tenglama xaqiqiy sonlar o‘qida yechimga ega bo‘lmaganligi sababli funksiyaning ikkinchi tartibli hosilasi nolga teng bo‘lmasligi, ya’ni egilish nuqtasi yo‘qligi kelib ciqadi. Ikkinchi tartibli hosilaning qiymatlari [0; 1) da ?``(x)>0, (1; + ∞) da ?``(x)<0. Demak, funksiya grafigi (-1; 1) da qavariq, hamda va (1; +∞) da botiq bo‘ladi.
Download 109 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling