Mavzu: kompleks sonlar va ular ustida amallar,hayotga tatbiq reja


Download 0.83 Mb.
bet3/4
Sana14.12.2022
Hajmi0.83 Mb.
#1006690
1   2   3   4
Bog'liq
MATEM MT 2

Bundan tashqari, har bir kompleks son (1) ga boshi koordinatalar boshiga, oxiri M (x;y) nuqtada bo`lgan vektor (radius – vektor) mos keltiriladi. Bu holda ham, har bir kompleks songa bitta radius – vektor mos kelib, har bir nuqta bitta kompleks sonni aniqlaydi (5-rasm)

Bundan tashqari, har bir kompleks son (1) ga boshi koordinatalar boshiga, oxiri M (x;y) nuqtada bo`lgan vektor (radius – vektor) mos keltiriladi. Bu holda ham, har bir kompleks songa bitta radius – vektor mos kelib, har bir nuqta bitta kompleks sonni aniqlaydi (5-rasm)

Koordinatalar boshidan M (x, y) nuqta-gacha bo`lgan masofa, ya`ni OM vektorning uzunligi kompleks son – (1) ning moduli deyiladi va |z| yoki r bilan belgilanadi, shun-ga ko`ra: r=|z|.

Chizmada Ox o`qining musbat yo`na-lishi bilan radius vektor orasidagi burchakni φ bilan belgilab, ∆ONM dan topamiz:

x = r cosφ y = r sinφ (2)

x va y qiymatini (1) ga qo`yib

z = r (cosφ + isinφ) (3) 

ni topamiz.

Kompleks sonning (3) shakldagi ko`rinishiga kompleks son-ning trigonometrik shakli deyiladi, φ esa kompleks sonning argumenti deyiladi va Argz bilan belgilanadi. φ bilan birga k ning ixtiyoriy butun qiymatida φ+2πk ham z ning argumenti bo`ladi, ya`ni argz = φ+2πk. Bu qiymatlardan eng kichik musbati, ya`ni [0,2π] oraliqda yotuvchi qiymati, argumentning bosh qiymati deyiladi va Argz bilan belgilanadi, ya`ni Argz = φ.

Kompleks sonning (3) shakldagi ko`rinishiga kompleks son-ning trigonometrik shakli deyiladi, φ esa kompleks sonning argumenti deyiladi va Argz bilan belgilanadi. φ bilan birga k ning ixtiyoriy butun qiymatida φ+2πk ham z ning argumenti bo`ladi, ya`ni argz = φ+2πk. Bu qiymatlardan eng kichik musbati, ya`ni [0,2π] oraliqda yotuvchi qiymati, argumentning bosh qiymati deyiladi va Argz bilan belgilanadi, ya`ni Argz = φ.

Bosh argument φ uchun munosabatlar o`rinli bo`-lib, φ ning qiymatini aniqlashda x va y ning ishoralariga, ya`ni M nuqta-ning qaysi chorakda ekanligiga e`tibor berish kerak.


Download 0.83 Mb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling