Mavzu: Mulohaza va ular ustida amallar Reja


Mulohazalar algebrasi formulasining normal shakllari


Download 166.26 Kb.
bet13/13
Sana22.06.2023
Hajmi166.26 Kb.
#1647442
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
1-Mulohaza va ular ustida amallar

3. Mulohazalar algebrasi formulasining normal shakllari


1-teorema. Mulohazalar hisobidagi har bir isbotlanuvchi formula mulohazalar algebrasida aynan chin (tavtalogiya, umumqiymatli) formula bo’ladi.
Isboti. Teoremani isbot qilish uchun quyidagi uchta holni ko’rib chiqishga to’g’ri keladi:

  1. Mulohazalar hisobidagi har bir aksioma mulohazalar algebrasidagi aynan chin formuladir;

  2. Aynan chin formulalarga o’rniga qo’yish qoidasini qo’llash natijasida hosil qilingan formulalar ham aynan chin formulalar bo’ladi;

  3. aynan chin formulalarga xulosa qoidasini qo’llash natijasida hosil qilingan formulalar ham aynan chin formulalar bo’ladi.

  1. Holning isboti. Mulohazalar hisobi aksiomalarining aynan chinligini

isbotlash uchun chinlik jadvalidan foydalanamiz:

  1. ifodasida bitta o’zgaruvchisi bor aksiomalar –




x

IV2

IV3

1

1

1

0

1

1



  1. ifodasida

  2. ikkita o’zgaruvchisi bor aksiomalar –

X

y

1

I­I1

I­I2

III1

III2

IV1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

d) ifodasida uchta o’zgaruvchisi bor aksiomalar –



X

y

z

I2

I­I3

III3

1

1

1

1

1

1

1

1

0

1

1

1

1

0

1

1

1

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

0

1

1

1

0

0

1

1

1

1

0

0

0

1

1

1

1) hol isbot bo’ldi.



  1. holning isboti. Avval quyidagi lemmalarni kiritamiz.

1-lemma. A va B formulalarning ifodasiga kiruvchi hamma o’zgaruvchilar va bu o’zgaruvchilarning ixtiyoriy qiymatlar satri bo’lsin. Agar bo’ladi
. 2-lemma. A – berilgan formula, x – o’zgaruvchi, B – mulohazalar hisobining istalgan formulasi bo’lsin. Agar A aynan chin formula bo’lsa, u holda formula ham aynan chin formula bo’ladi.
Bu lemmalar 2) holni isbot qiladi.

  1. hol uchun isboti quyidagi lemmaga tayanadi.

3-lemma. Agar C va formulalar aynan chin bo’lsa, u holda A ham aynan chin formula bo’ladi.
3-lemmaning isboti. lar C va A formulalar ifodasiga kiruvchi o’zgaruvchilar bo’lsin. A –aynan chin formula emas deb faraz qilamiz. U holda o’zgaruvchilarning shunday qiymatlar satr mavjud bo’ladiki, bo’ladi. Bu yerdan

ekanligi kelib chiqadi. Bu natija formulaning aynan chin ekanligiga ziddir. Bu qarama-qarshilik, A aynan chin formula ekanligini isbotlaydi. 3-lemma isbot bo’ldi.
2-teorema (keltirib chiqarish haqida). A–mulohazalar hisobining biror formulasi; formula ifodasiga kiruvchi o’zgaruvchilar va o’zgaruvchilarning ixtiyoriy qiymatlar satri bo’lsin. H orqali chekli formulalar majmuasini belgilaymiz. Agar

bo’lsa, u holda formulalar majmuasi uchun:

  1. bo’lgan holda

  2. bo’lgan holda bo’ladi.

3-teorema. Mulohazalar algebrasining har bir aynan chin formulasi mulohazalar hisobida isbotlanuvchi formula bo’ladi.

Xulosa
Ta’lim muassalarida matematikada mulohazalar algebrasi interpritatsiyalari doir mavzu va masalalar yetarlicha uchraydi. Ushbu mustaqil ishi esa matematik mantiqning yuqoridagi tushunchalarini yoritishga qaratilgan. Bunday mavzudagi misol, o’quvchilar uchun qiyin o’zlashtiriluvchi bo’lib hisoblanadi. Shuning uchun bunday mavzular bo’yicha ishlash o’quvchilardan malaka va ko’nikmalarni tarkib toptirish lozimligini talab qiladi.
Ushbu mustaqil ishidan xulosa qilib shuni aytish mumkinki, biz yuqorida misollarni yechishda mulohazalar algebrasi, mulohazalar hisobi formulalari va ularning xossalaridan foydalandik.
Mulohazalar algebrasi va uning interpritatsiyasilaridan kelib chiqadigan natijalar bizga rele–kontakt sxemalarini yasashga yordam beradi. Mulohazalar hisobi va mulohazalar algebrasi orasidagi munosabatlar mulohazalar hisobidagi formulaning aynan chin(tavtalogiya, umumqiymatli) formula bo’lishini isbotlashga yordam beradi.
Mustaqil ishida mulohazalar hisobi bo’lishi uchun hisobning simvollar tavsifi, formulalar va keltirib chiqarish formulalari ta’rifidan iborat bo’lishi ekanligi ko’rsatildi.
Mustaqil ishini bajarishda davomida oliy ta’lim muassalaridagi darsliklarga bog’liq ba’zi mavzularni bayon etishda namunaviy dasturiy dars matnlarini kiritdik.
Ta’lim muassasalari uchun mo’ljallangan matematik mantiq va diskret matematika darsliklarining misollar keltirilgan qismlarida biz keltirgan xossa va isbotlashlarning ba’zi usullaridan foydalanish o’quvchiga qulaylik yaratadi.


Foydalanilgan adabiyotlar:
1. Mirziyoyev Sh . M. Erkin va farovon demokratik O’zbekiston davlatini birgalikda barpo etamiz . O’zbekiston Respublikasi Prezidenti lavozimiga kirishish tantanali marosimiga bag’ishlangan Oliy Majlis palatalarining qo’shma majlisidagi nutq , Toshkent , 2016 .
2 . Mirziyoyev Sh . M . Tanqidiy tahlil , qat’iy tartib - intizom va shaxsiy jabobgarlik - har bir raxbar faoliyatining kundalik qoidasi bo’lishi kerak . Mamlakatimizni 2016 – yilda ijtimoiy – iqtisodiy rivojlantirishning asosiy yakunlari va 2017 yilga mo’ljallangan iqtisodiy dasturning eng muhim ustuvor yo’nalishlariga bag’ishlngan Vazirlar Mahkamasining kengaytirilgan majlisidagi ma’ruza , 2017 yil 14 – yanvar - Toshkent , O’zbekiston , 2017 .
3 . Mirziyoyev Sh . M . Buyuk kelajagimizni mard va olijanob xalqimiz bilan birga quramiz . Mazkur kitobdan O’zbekiston Respublikasi Prezidenti Shavkat Mirziyoyevning 2016 yil 1- noyabrdan 24 noyabrga qadar Qoraqalpog;iston Respublikasi , viloyatlar va Toshkent shahri saylovchilari vakillari bilan o’tkazilgan saylovoldi uchrashuvlarida so’zlagan nutqlari o’rin olgan . Toshkent , O’zbekiston , 2017 . 488- bet .
4 . Mirziyoyev Sh . M . Qonun ustuvorligi va inson manfaatlarini taminlash yurt taraqqiyoti va xalq farovonligining garovi . O’zbekiston Respublikasi Konstitutsiyasi qabul qilinganining 24 yilligiga bag’ishlangan tantanali marosimdagi ma’ruza . 2016 yil , 7- dekabr – Toshkent , O’zbekiston 2017, 48- bet.
5 . Hotam To’rayev “ Matematik mantiq va diskret matematika “
Toshkent “ O’qituvchi “ -2003 .
6 . Kenneth H. Rosen Discrete mathematics and is applications , 7- edition , The Mc Graw – Hill Companies 2012 . Введение в математичискую Логину : М . Наука 1984
7 . Мендельсон Е.Введение в математичискую Логину : М . Наука 1984.
8 . Яблонский С .В . Введение в дискретнию математику - М . Наука 1986.
9 . Y unusov A . S . - Matematik mantiq va algoritimlar nazariyasi elementlari . Toshkent 2008 .
10. Hotam To’rayev 2 jildli kitob “ Diskret matematika va matematik mantiq “ 2013 – yil .
11 . Зиков А. А . Основы теории графов . М . « Наука « , 1987.
12 . Новиков П . С . Элементы математической логики . М . Наука , 1973 .
Internet saytlari
13. www.lib.homelinex.org /math
14 . www.eknigu.com./lib/ Mathematics/
15 . www.eknigu .com/info/M
16. http://dimacs,Rutgers,edu/
17. http://www.math.uu.se/logic-server/
18 . http://book.uhost.ru./036413/



Download 166.26 Kb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling