Mavzu: Mulohaza va ular ustida amallar Reja


Kon’yunksiy (mantiqiy ko’paytma) amali


Download 166.26 Kb.
bet5/13
Sana22.06.2023
Hajmi166.26 Kb.
#1647442
1   2   3   4   5   6   7   8   9   ...   13
Bog'liq
1-Mulohaza va ular ustida amallar

Kon’yunksiy (mantiqiy ko’paytma) amali. Endi ikita mulohazaga nisbatan qo’llanilishi mumkin bo’lgan binary amallardan biri hisoblangan kon’yunksiya (mantiqiy ko’paytma) amalini o’rganamiz.
3-ta’rif. Berilgan x va y elementar mulohazalar chin bo’lgandagina ch qiymat qabul qilib, qolgan hollarda esa, yo qiymat qabul qiluvchi murakkab mulohaza x va y mulohazalarning kon’yunksiyasi deb ataladi.
Berilgan mulohazalarning kon’yunksiyasi bu mulohazalarga kon’yunksiya amalini qo’llab hosil qilindi” deb aytish mumkin. Kon’yunksiya amalini 1.1.2-jadvalda ifodalangan amali bo’lib, unga o’zbek tilidagi “va” bog’lovchisi mos keladi. Berilgan x va y elementar mulohazalar ustida bajariladigan kon’yunksiya (mantiqiy ko’paytma ) amalini belgilashda “ yoki “&” belgi qo’llaniladi, ya’ni bu amal natijasida hosil bo’lgan murakkab mulohaza (yoki x&y ) ko’rinishida belgilanadi. Mantiqiy ko’paytma amalini ifodalovchi “ yoki “&” ba’zan yozilmasligi (masalan, x va y o’zgaruvchi mulohazalarning mantiqiy ko’paytmasi xy ko’rinishida ifodalanishi), ba’zan esa nuqta ( ) belgisi bilan almashtirilishi ( ko’rinishida ifodalanishi ) mumkin (x&y, xy) mulohaza “ x va y “ deb o’qiladi. x va y elementar mulohazalarning kon’yunksiyasi uchun chinlik jdvali 4-jadval bo’ladi (2-jadvalning x,y va ustunlarig qarang).
3-misol. “ 5 soni toq va tubdir” ko’rinishdagi murakkab mulohaza chindir, chunki berilgan mulohaza ikkita “ 5 soni toqdir” va “ 5 soni tubdir”. Elementar mulohazalar kon’yunksiyasi sifatida qaralishi mumkin hamda bu ikkita elementar mulohazalarning har biri chindir.

x

y



Yo

yo

Yo

Yo

Ch

Yo

Ch

Yo

Yo

ch

Ch

ch
4-misol. “10 soni 5 ga qoldiqsiz bo’linadi va 7>9”. Murakkab mulohaza yolg’on, chunki bu mulohaza ikkita “ 10 soni 5ga qoldiqsiz bo’linadi” va “7>9” elementar mulohazalar kon’yunksiyasi sifatida qaralsa, bu ikkita elementar miri aniqrog’I “7>9” mulohaza yolg’ondir. (1.1.4-jadval)

Download 166.26 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling