Mavzu; Sonli qatorlar Reja. Kirish Asosiy qism Asosiy tushunchalar
Download 193.79 Kb.
|
kurs ishi sonli qatorlar
2. Yaqinlashuvchi qatorlar
Bizga ushbu va qatorlar berilgan va c ixtiyoriy o‘zgarmas son bo‘lsin. Ushbu qator (1) qatorni c o‘zgarmas songa ko‘paytirish natijasida hosil qilingan deyiladi. qatorlar esa, mos ravishda (1) va (2) qatorlarning yig‘indisi va ayirmasi deb ataladi. 1-teorema. Agar (1) qator yaqinlashuvchi, yig‘indisi S ga teng bo‘lsa, u holda (3) qator ham yaqinlashuvchi bo‘lib, yig‘indisi cS ga teng bo‘ladi. Isboti. (3) qatorning n-xususiy yig‘indisini yozib olamiz: . Buni quyidagicha yozib olish mumkin: , bu yerda Sn (1) qatorning n-xususiy yig‘indisi. Teorema shartiga ko‘ra , u holda limit mavjud bo‘ladi: . Shunday qilib, yaqinlashuvchi qatorni o‘zgarmas songa ko‘paytirish natijasida yana yaqinlashuvchi qator hosil bo‘ladi va uning yig‘indisini topish uchun berilgan qator yig‘indisini shu songa ko‘paytirish yetarli. 2-teorema. Agar (1) va (2) qatorlar yaqinlashuvchi va yig‘indilari mos ravishda S va S’ bo‘lsa, u holda (4) va (5) qatorlar ham yaqinlashuvchi bo‘ladi va ularning yig‘indilari mos ravishda S+S’ va S-S’ ga teng bo‘ladi. Shunday qilib, yaqinlashuvchi qatorlarni chekli yig‘indilar kabi qo‘shish va ayirish mumkin ekan. Bu natijani yaqinlashuvchi qatorlarning algebraik yig‘indilari uchun ham umumlashtirish mumkin. 3-teorema. Agar yaqinlashuvchi qatorda hadlarning joylashish tartibini o‘zgartirmasdan ixtiyoriy guruhlash natijasida hosil bo‘lgan qator yaqinlashuvchi va uning yig‘indisi avvalgi qator yig‘indisiga teng bo‘ladi. Qatorning qoldig‘i Ushbu
qator berilgan bo‘lsin. Uning dastlabki k ta (tayinlangan son) hadini tashlab yuborish natijasida yangi qator hosil bo‘ladi: (2) qator (1) qatorning qoldig‘i deyiladi. 3. Qator yaqinlashishining zaruriy sharti. Teorema. Agar (1) qator yaqinlashuvchi bo‘lsa, u holda uning an umumiy hadi n cheksizga intilganda nolga intiladi, ya’ni bo‘ladi. Isboti. Faraz qilaylik, (1) qator yaqinlashuvchi va yig‘indisi S ga ya’ni bo‘lsin. U holda {Sn} ketma-ketlikning qism ketma-ketligi ham yaqinlashuvchi va bo‘ladi. Ravshanki. bundan mavjud va . Shunday qilib, (1) qator yaqinlashuvchi bo‘lishi uchun uning umumiy hadi nolga intilishi zarur ekan. Yuqoridagi teoremadan qator uzoqlashishining yetarli sharti kelib chiqadi. Natija. Agar (1) qatorning an umumiy hadi n cheksizga intilganda noldan farqli chekli limitga ega bo‘lsa, yoki limitga ega bo‘lmasa, u holda bu qator uzoqlashuvchi bo‘ladi. Bu natija ba’zi qatorlarning uzoqlashuvchi ekanligiga oson ishonch hosil qilishga yordam beradi. 3-misol. Ushbu qatorni yaqinlashishga tekshiring. Yechish. Qatorning umumiy hadi ga teng va demak, yuqoridagi natijaga ko‘ra qator uzoqlashuvchi. 4-misol. Ushbu qatorni yaqinlashishiga tekshiring. Yechish. Bu qatorning umumiy hadi an= va . Demak, berilgan qator uzoqlashuvchi. Yuqorida isbotlangan teoremaning teskarisi, ya’ni shartdan qatorning yaqinlashuvchi ekanligi kelib chiqavermaydi. Bunga misol sifatida garmonik qator deb ataluvchi ushbu qatorni qaraymiz: (2) Garmonik qatorning uzoqlashuvchi ekanliligini ko‘rsatamiz. Buning uchun teskaridan, ya’ni garmonik qator yaqinlashuvchi deb faraz qilamiz. U holda uning xususiy yig‘indisi chekli S limitga ega bo‘ladi. Ravshanki, qatorning xususiy yig‘indisi ham shu limitga ega bo‘ladi. Bu holda . Ammo , ya’ni , bundan ketma-ketlikning da nolga intilmasligi kelib chiqadi. Bu esa garmonik qator yaqinlashuvchi degan farazimizga zid. Demak, garmonik qator uzoqlashuvchi ekan. Download 193.79 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling