Me: Bir loyihada dastur tuzish kerak, dastur kasalxonada qo'llaniladi, ishdan maqsad shifokor bemorga tashxis qo'yadi va unga rangli bilaguzuk beradi va biz uning rangi qanday ekanligini aniqlashimiz mumkin


Download 21.98 Kb.
bet2/2
Sana23.04.2023
Hajmi21.98 Kb.
#1389664
1   2
Bog'liq
shifoxona loyihasi chagpt yfx

# Load the image
img = cv2.imread('patient_bracelet.jpg')
# Convert the image to the HSV color space
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Threshold the image to extract the red color
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([170, 50, 50])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
mask = mask1 + mask2
# Apply morphological operations to the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask = cv2.erode(mask, kernel, iterations=2)
mask = cv2.dilate(mask, kernel, iterations=2)
# Find the contours of the objects in the image
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter the contours based on area and shape
min_area = 1000
max_area = 5000
contours = [cnt for cnt in contours if min_area < cv2.contourArea(cnt) < max_area]
# Compute the mean color of the object
mean_color = cv2.mean(img, mask=mask)
# Display the result
cv2.imshow('Result', img)
cv2.waitKey(0)
E'tibor bering, ushbu kod tasvirdagi qizil rangni aniqlash uchun xosdir va siz turli xil ranglarni aniqlash yoki turli yorug'lik sharoitlariga moslashish uchun rang diapazonlari va boshqa parametrlarni o'zgartirishingiz kerak bo'ladi. Bundan tashqari, siz kodni kiritishingiz kerak bo'ladi.
Me: Rangli ma'lumotga ega bo'lganimizdan so'ng, bilaguzuk rangini tasniflash va bemorni qaysi bo'limga yuborish kerakligini aniqlash uchun mashinani o'rganish modeli yordamida uni qanday kodlashimiz mumkin?
Chat: Bilaguzuk rangini tasniflash va mashinani o'rganishdan foydalangan holda bemorni qaysi bo'limga yuborish kerakligini aniqlash uchun siz quyidagi amallarni bajarishingiz mumkin:
Ma'lumotlar to'plamini to'plang: Sizga bemor bilaguzuklari tasvirlari, ularning mos ranglari va ular bog'langan bo'limlari kerak bo'ladi. Siz ushbu rasmlarni kamera yordamida suratga olishingiz va ularni qo'lda belgilashingiz yoki mavjud ma'lumotlar to'plamidan foydalanishingiz mumkin.
Tasvirlarni oldindan qayta ishlash: Tasvirlarni mashinani o'rganish modeliga kiritishdan oldin ularni oldindan qayta ishlashingiz kerak bo'ladi. Bu ma'lumotlar to'plamining xilma-xilligini oshirish uchun ularning o'lchamlarini bir xil o'lchamga o'zgartirish, piksel qiymatlarini normallashtirish va ma'lumotlarni ko'paytirishni o'z ichiga olishi mumkin.
Mashinani o'rganish modelini o'rgating: bilaguzuk ranglarini tasniflash uchun turli xil mashina o'rganish modellaridan foydalanishingiz mumkin. Mashhur yondashuvlardan biri konvolyutsion neyron tarmog'idan (CNN) foydalanish bo'lib, u tasvirlardan xususiyatlarni ajratib olishni va ularni shu xususiyatlar asosida tasniflashni o'rganishi mumkin. Siz ma'lumotlar to'plamini trening va tekshirish to'plamlariga bo'lishingiz va o'quv to'plamidan foydalanib modelni o'rgatishingiz kerak bo'ladi.
Modelni baholang: Model o'qitilgandan so'ng, bilakuzuklar ranglarini qanchalik yaxshi tasniflashi mumkinligini tekshirish uchun uning ishlashini tekshirish to'plamida baholashingiz mumkin. Ishlashni baholash uchun aniqlik, aniqlik va eslab qolish kabi ko'rsatkichlardan foydalanishingiz mumkin.
Modelni o'rnating: Model o'qitilgandan va baholangandan so'ng, real vaqt rejimida bilaguzuk ranglarini tasniflash uchun uni kasalxonaga joylashtirishingiz mumkin. Siz bilaguzuklarni suratga olish uchun kameradan foydalanishingiz va rang va bo'limni aniqlash uchun ularni modelga kiritishingiz mumkin.
Bu erda bilakuzuklar ranglarini tasniflash uchun CNNni qanday o'rgatish mumkinligini ko'rsatadigan ba'zi namuna Python kodlari:
import tensorflow as tf
from tensorflow.keras import layers, models
# Load the dataset
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
'dataset/train',
validation_split=0.2,
subset="training",
seed=123,
image_size=(224, 224),
batch_size=32
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
'dataset/train',
validation_split=0.2,
subset="validation",
seed=123,
image_size=(224, 224),
batch_size=32
)
# Define the CNN model
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(7, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
# Train the model
history = model.fit(train_ds, validation_data=val_ds, epochs=10)
# Evaluate the model
test_ds = tf.keras.preprocessing.image_dataset_from_directory(
'dataset/test',
image_size=(224, 224),
batch_size=32
)
loss, accuracy = model.evaluate(test_ds)
print('Test accuracy:', accuracy)
# Deploy the model
# Once the model is trained and evaluated, you can save it and deploy it to the hospital.
model.save('wristband_model.h5')
Esda tutingki, ushbu kod TensorFlow va CNN modelidan foydalanishga xosdir va undan foydalanish uchun uni o'zgartirishingiz kerak bo'ladi.
Me: kamera yordamida bemor bilaguzuk tasvirlarini olish uchun dasturni qanday yozish kerak:
Chat: Kamera yordamida bemor bilaguzuk tasvirlarini olish uchun siz Python-da mashhur kompyuter ko'rish kutubxonasi bo'lgan OpenCV-dan foydalanib dastur yozishingiz mumkin. Buni qanday amalga oshirishingiz mumkinligini ko'rsatadigan ba'zi bir namuna kodlari:
import cv2
# Open the camera
cap = cv2.VideoCapture(0)
# Set the resolution of the camera
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
# Loop over frames from the camera
while True:
# Capture a frame from the camera
ret, frame = cap.read()
# Display the frame
cv2.imshow('frame', frame)
# Wait for a key press
key = cv2.waitKey(1) & 0xFF
# If the 'q' key is pressed, break from the loop
if key == ord('q'):
break
# Release the camera and close the window
cap.release()
cv2.destroyAllWindows()
Ushbu kod standart kamerani ochadi va video oqimini oynada ko'rsatadi. Keyin siz bilaguzukni tasvirdan aniqlash va chiqarish uchun OpenCVning tasvirni qayta ishlash funksiyalaridan foydalanishingiz mumkin. Bilaguzukni olib tashlaganingizdan so'ng, uning rangini tasniflash va bemorni qaysi bo'limga yuborish kerakligini aniqlash uchun mashinani o'rganish modelidan foydalanishingiz mumkin.
Download 21.98 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling