Металлорежущие станки, наряду с прессами и молотами, представляют собой тот вид оборудования, который лежит в основе производства всех современных машин, приборов, инструментов и других изделий


Download 1.96 Mb.
bet29/62
Sana18.12.2022
Hajmi1.96 Mb.
#1031028
1   ...   25   26   27   28   29   30   31   32   ...   62
Bog'liq
Лекции 5 сем 06

2.3 Шпиндели и шпиндельные узлы


Шпиндель является конечным звеном привода главного движения и предназначен для крепления инструмента или заготовки.
Шпиндельный узел в целом (шпиндель, его опоры, элементы кинематической цепи, смонтированные на нём) предназначен для осуществления точного вращения инструмента или обрабатываемой заготовки. Шпиндельный узел – ответственейшая часть станка и качество элементов этого узла и его сборки оказывает существенное, часто лимитирующее, влияние на точность, производительность и надёжность всего станка.
Шпиндельные узлы станков должны обеспечивать: быстрое и точное закрепление инструмента или обрабатываемой детали в шпинделе; передачу на инструмент или заготовку требуемых режимов резания; точность вращения шпинделя; необходимые быстроходность, жёсткость и долговечность; высокие динамические качества; минимальные тепловыделения и температурные деформации. Рассмотрим подробнее некоторые из этих качеств и критериев.
Точность вращения шпинделя оценивается по величине радиального и осевого биения его переднего конца. Предельные значения этих параметров для универсальных станков конкретных классов точности устанавливаются ГОСТами; для специальных станков они определяются в зависимости от требуемой точности обработки:

где – допустимое биение шпинделя;
– допуск на лимитирующий размер готового изделия.
Для обеспечения требуемой точности вращения выбирают подшипники примерно в три раза точнее, чем допустимое биение шпинделя.
Быстроходность оценивается показателем b=n·d, мм/мин, где d – диаметр шейки шпинделя под передний подшипник, а n – частота вращения шпинделя. Для опор разных типов принимаются следующие максимальные значения показателей b:
- опоры на подшипниках качения: (2-2,5)·106;
- гидростатические опоры: (1,5-1,8)·106 (ограничено потерями мощности);
- аэростатические опоры: (2,5-3)·106 (ограничено риском потери устойчивости).
Учитывая указанное, а также то, что подшипники качения имеют меньшую стоимость при централизованном изготовлении и просты в эксплуатации, подавляющее число станков изготавливают со шпиндельными узлами на подшипниках качения. Следует иметь в виду, что установка каждого дополнительного подшипника значительно снижает быстроходность. Автоматическое регулирование натяга в подшипниках, использование совершенной системы смазывания позволяет повысить быстроходность шпиндельных узлов.
жёсткость (статическая жёсткость) шпиндельного узла, радиальная и осевая, определяется по деформации шпинделя под нагрузкой:

где Р – сила, приложенная на переднем конце шпинделя, Н;
у – прогиб переднего конца шпинделя в совокупности с деформацией опор, мкм.
Допустимую величину прогиба и жёсткость часто увязывают с требованиями к точности обработки:

Деформация шпиндельных узлов в общем балансе упругих перемещений станков доходит до 50 %, а в некоторых типах до 85 %.
Жёсткость шпинделя на участке между опорами, исходя из нормальной работы подшипников, не должна быть менее 250-500 Н/мкм (бóльшие значения – для прецизионных станков). Для этого диаметр шпинделя должен быть не меньше, чем где l – расстояние между опорами шпинделя.
Иногда в станках нормального класса точности приведённой величиной ограничивают жёсткость переднего конца шпинделя.
Долговечность шпиндельного узла зависит в основном от долговечности опор шпинделя, которая, в свою очередь, зависит от эффективности системы смазки и качества уплотнений, частоты вращения, величины предварительного натяга в подшипниках качения и т.д. Если диаметр шейки шпинделя под подшипник выбран по критерию жёсткости, то размер подшипника может считаться оптимальным и его долговечность при нормальных условиях эксплуатации допустимо предполагать до 12000-20000 ч. При применении бесконтактных опор (гидростатических, гидродинамических, аэростатических) долговечность теоретически считают неограниченной.
В металлорежущих станках часто возникают вибрации, которые отрицательно сказываются на точности и чистоте обработки, стойкости инструмента и производительности станка. Виброустойчивость станка на 40-50 % зависит от динамических качеств (виброустойчивости) шпиндельного узла. Виброустойчивость узла определяется амплитудой колебаний переднего конца шпинделя и частотой собственных колебаний. Причинами вынужденных колебаний, способных привести к возникновению вибраций и резонансных явлений, могут быть дисбаланс находящихся на шпинделе деталей; работа зубчатой передачи, если посредством таковой передаётся вращение шпинделю; прерывистый характер резания и пр. Чем выше собственная частота шпинделя (не менее 500-600 Гц) и меньше резонансная амплитуда, тем лучшими потенциальными возможностями обладает шпиндельный узел.
Тепловыделения и температурные деформации шпиндельного узла влияют и на точность обработки, и на работоспособность опор. Тепловыделения регламентируются допустимым нагревом подшипников. Норма нагревания установлена только для станков класса Н (допустимый нагрев наружного кольца подшипника составляет 70 °С), для станков других классов имеются лишь некоторые рекомендации (например, нагрев наружного кольца подшипника в станках класса С не должен превышать 28-30 °С).

Download 1.96 Mb.

Do'stlaringiz bilan baham:
1   ...   25   26   27   28   29   30   31   32   ...   62




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling