Методы интеллектуального анализа данных
Download 183.72 Kb.
|
Методы интеллектуального анализа данных
Технология Data Mining
Появление технологии Data Mining связано с необходимостью извлекать знания из накопленных информационными системами разнородных данных. Возникло понятие, которое по- русски стали называть «добыча», «извлечение» знаний. За рубежом утвердился термин «Data Mining». Широко использовавшиеся раньше методы математической статистики оказались полезными главным образом для проверки заранее сформулированных гипотез (verification-driven data mining) и для «грубого» разведочного анализа, составляющего основу оперативной аналитической обработки данных (online analytical processing OLAP). Необходимость в фильтрации возникает, когда нужно отделить полезную информацию от искажающего его шума за счет сглаживания, очистки, редактирования аномальных значений, устранения незначащих факторов, понижения размерности информации и т.д. Применение фильтрации в системах анализа данных относится к первичной обработке данных и позволяет повысить качество исходных данных, а, следовательно, и точность результата анализа. Деревья решений позволяют представлять правила в иерархической, последовательной структуре, где каждому объекту соответствует единственный узел, дающий решение. Под правилом понимается логическая конструкция, представленная в виде «если... то...». Деревья решений применяются при решении задач поиска оптимальных решений на основе описанной модели поведения. Ассоциативные правила находят закономерности между связанными событиями. Примером такого правила служит утверждение, что в том случае, если произошло событие А, то произойдет и событие В с вероятностью С. Генетические алгоритмы применяются при решении задач оптимизации. Они нужны для решения такого класса задач, когда можно составить описание возможных вариантов решения в виде вектора параметров, и известен критерий, определяющий эффективность каждого варианта. Нейронные сети реализуют алгоритмы на основе сетей обратного распространения ошибки, самоорганизующихся карт Кохонена, RBF-сетей, сетей Хэмминга и других подобных алго- 1 ритмов анализа данных. Применяются для восстановления пропусков в данных, поиска закономерностей, классификации и кластеризации данных, прогнозирования и моделирования. Рис. 7.1. Download 183.72 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling