Michel chamat dimitrios bersi kodra


Download 1.28 Mb.
Pdf ko'rish
bet14/29
Sana18.06.2023
Hajmi1.28 Mb.
#1597890
1   ...   10   11   12   13   14   15   16   17   ...   29
Bog'liq
Таржима 3-5, 16-22, 29-30 ва 34-49 бетлар БМИ СКК

3.2.1.1. 
Regression 
This supervised algorithm predicts continuous values based on the 
historical dataset by fitting the dataset into a curve with two sets of variables: 
the dependent and independent variables. 
Based on the relation between the two sets, the regression type is chosen. 
Simple regression is based on one linear or non-linear variable and its 
predicted dependent variable by the independent one. While multiple 
regression is the extension of the simple type and is based on multiple 
variables, where the capability of the algorithm is increasing proportionally 
with the complexity of the model. 
Simple regression is a fast and simple algorithm and can be used to predict 
continuous outputs based on a two-dimensional curve, although with several 
values, regression will become complicated, specifically with a multi-
dimensional curve. 
Moreover, the regression models are divided at two major subcategories in 
relation with their linearity: 
Fig. 9. Linear (first two) and non-linear fit of samples, from [21].
Linear regression is when the dependency of the output-input relation can be 
defined by a linear function. On the other hand, non-linear regression is 
defined by non-linear functions as exponentials, polynomials and quadratics. 


20 
3.2.1.2. 
Classification 
In machine learning, the classification method is another supervised 
learning approach, which can be characterized as a means of categorizing, i.e. 
classifying, some unknown variables into a discrete set of classes. 
Classification attempts to learn the relationship between a set of feature 
variables and a target variable of interest [22]. 
In a classification problem, there exist two major constraints, which the 
fulfillment of both is sometimes unrealistic. At first, the set of classes are 
covering the whole possible output space, and secondly, the most important 
point about this set of ML algorithms is that the output value is discrete, with 
each example corresponding to precisely one class. There are occasions 
which examples might correspond to different classes or alternatively, 
examples that could not be classified in a particular input value, problem that 
the “fuzzy” classifiers are trying to solve. [21] [23] 
Data classification has several applications in the modern industrial 
categories. Most importantly, many of the problems that developers are trying 
to solve can be expressed as association of a feature and a target variable. 
Moreover, this relation provides and extends the applicability for 
classification in a vast range of different scenarios. The most commonly used 
types of classifications algorithms in machine learning are: [24] 
·
Naïve Bayes: ML algorithms which take into consideration the 
principle of Maximum A Posteriori (MAP) for the classification of 
their problem. 
·
Decision trees: approach that splits the training set into distinct nodes, 
where one node can include one, most of or all of the different 
categories that the database can be divided. 
·
k-Nearest Neighbors (k-NN): a non-parametric classification 
algorithm that measures the distance of the unknown input from 
every other training example. [6] 
·
Logistic regression: a statistical ML technique which classifies the 
dataset records, based on the values of the input fields. 
·
Support Vector Machines (SVM): are among the most robust 
algorithms which are based in the maximization of the minimum 
distance from the decision line, i.e. separator, to the nearest example. 


21 
·
Neural Networks (NN): are based upon the log likelihood function 
with respect to the network parameters, extending to the multiclass 
problem and ensuing as output a binary or N-ary result. 
Less popular algorithms, as Extreme Learning Machines (ELM) and Linear 
Discriminant Analysis (LDA) are showing poor capabilities in evaluation 
[25], and high rate of misjudgment [26], respectively. 
3.2.2. 
Unsupervised Learning 
The most important difference between supervised and unsupervised 
learning is that the training data is unlabeled in a way that the algorithm does 
not have any specific information about the nature or the class of the inputs. 
The aim of this method focuses into finding clusters or similar inputs in the 
data, and consequently categorizing the unlabeled values in related groups. 
Moreover, the unsupervised approach is looking to determine the distribution 
of data within the input space, known as density estimation, or to project the 
data from a high-dimensional space down to lower and much simplistic 
systems for visualization. [22] Some of the most important ML unsupervised 
algorithms are shown in table 1 and in fig. 10 [23]. 
3.2.3. 
Semi Supervise Learning 
Semi supervised learning, as the title describes, is the mixed version of 
the two different methods previously presented in sections 3.2.1 and 3.2.2. 
These algorithms can operate with partially labeled data and the rest of its 
data, the majority in most of the cases, with unlabeled ones. A good example 
of semi supervised algorithms is the reinforcement learning, which is a 
method called an agent in this context [23] and it observes the environment, 
selecting its best action according to a policy defined by previous situations. 
These actions are resulting to rewards or penalties, whether there is a positive 
or negative outcome, respectively. In [7] [8], semi supervised techniques are 
used to explore the capability of implementing ML in the mobile network of 
LTE systems. 


22 
Table 1. 
ML unsupervised algorithms categorized.

Download 1.28 Mb.

Do'stlaringiz bilan baham:
1   ...   10   11   12   13   14   15   16   17   ...   29




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling