Microsoft Word Thomas Johnson II -honors Thesis final spring 2020. docx


Machine Learning with WEKA  3  Abstract


Download 0.62 Mb.
Pdf ko'rish
bet2/9
Sana24.03.2023
Hajmi0.62 Mb.
#1290142
1   2   3   4   5   6   7   8   9
Bog'liq
weka

 


Machine Learning with WEKA 

Abstract 
Computer science is a growing field and machine learning is a growing area within 
computer science. The development of various machine learning algorithms that have been 
created has been diverse. Using WEKA, the study used the mammography dataset to examine 
machine learning algorithms to explain what components of the machine learning algorithms 
may affect performance. 
The logistic regression model classified the most instances of the 
provided partitioned mammogram dataset. Results indicated an expansion in the assortment of 
machine learning algorithms would be employed generating a larger collection of models.
Keywords: machine learning, algorithms, WEKA, logistic regression 


Machine Learning with WEKA 

Introduction 
Machine learning is a growing field in computer science. One which has had growing 
implications across the various domains of STEM. Machine learning utilizes various algorithms 
derived from mathematical and statistical functions and concepts for the purpose of allowing 
computers to process data for various purposes while using the data that is inputted to improve the 
algorithm. The more data that is available, the more effective the machine learning algorithm 
becomes. There is a considerable number of machine learning algorithms that have been developed 
for such goals as classification and prediction. This diverse pool of options for machine learning 
algorithms has evolved because of the necessity of various algorithms being implemented to 
contribute to various goals. Simply because a portion of machine learning algorithms was 
developed for the same purpose does not mean that the algorithms will be equally effective in the 
same scenario. For an overview of machine learning algorithms, the benefits of a specific 
algorithm, and the vulnerabilities of a specific algorithm, sources such as 
Types of machine 
learning algorithms by Ayodele written in 2010 can provide some information.
For the purpose of 
this thesis, the focus will be exploring the most mammography on a given set of features.
Using the mammography dataset, we can examine different machine learning algorithms 
for the purpose of examining how effective a given machine learning algorithm will perform as 
opposed to another. Utilizing said machine learning algorithms will offer a chance to examine 
what components of each machine learning algorithms may affect the performance of the 
algorithm. The machine learning algorithms will be implemented through WEKA, a library in Java 
that provides access to machine learning algorithms within the Java programming language.
To do so, various machine learning algorithms will be used and evaluated using a select 
portion of variables to classify the level of distraction imposed by various scenarios. The results 


Machine Learning with WEKA 

will reveal which machine learning algorithm yields the best classification results for the 
mammography dataset and permit discussion as to why each machine learning algorithm 
performed as it did on the mammography dataset.

Download 0.62 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling