Minorlar va algebraik to’ldiruvchilar


Vektor ko’paytmaning xossalari


Download 1.5 Mb.
bet15/17
Sana29.09.2023
Hajmi1.5 Mb.
#1689926
1   ...   9   10   11   12   13   14   15   16   17
Bog'liq
Minorlar va algebraik to’ldiruvchilar.

Vektor ko’paytmaning xossalari.

1. [ ]=-[ ].


2 . va vektorlar parallel bo’lsa , x =0. z
3. λ( )= ( ) = ( )
4. x( + )= x + x . y
Endi 1,2 xossalardan foydalanib birlik x
vektorlarning vektor ko’paytmalarini chiqaraylik.
2-xossaga ko’ra ekanligi ravshan.
| |=|[ ]|=| || | sin =1
Ikkinchi tomondan = bu vektor va vektorlarga perpendikulyar bo’lib z o’qining musbat yo’nalishi bo’yicha yo’nalgan va dan gacha eng qisqa masofa soat strelkasiga qarshi yo’nalgan bo’ladi. Demak bu vektor = ekan, = xuddi shuningdek qolganlarini yozsak:
=0, = , =- ,
=- , =0, = ,
= , =- , =0.

Koordinatalari bilan berilgan vektorlarning vektor ko’paytmasi.




={x1, y1, z1} va x ={x2, y2, z2} vektorlar berilgan bo’lsin.
x =(x1 +y1 +z1 )x(x2 +y2 +z2 )=(y1z2-z1y2)
+(-x1z2+z1x2) + (x1y2-y1x2) = ,

ko’rinishda ham yozish mumkin.
Misol. ={2;5;7} , ={1;2;4}, |[ ]|=q
x =6 - - ; |[ ]|=

Download 1.5 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling