Mitochondrial endocrinology Mitochondria as key to hormones and metabolism


Download 2.44 Mb.
Pdf ko'rish
bet13/23
Sana01.10.2017
Hajmi2.44 Mb.
#16915
1   ...   9   10   11   12   13   14   15   16   ...   23
) was found. Interestingly, acute anaerobic exercise (sprint exer-

cise) in young healthy subjects increased irisin levels, whereas

chronic exercise of 8 weeks (three times sprint exercise per week)

did not. It is important to note that this study solely looked at

anaerobic exercise; it is known that aerobic exercise increases

PGC1


a

to a greater extent than anaerobic exercise (

Handschin

and Spiegelman, 2008

), and this (aerobic) type of exercise would

thus be more effective in irisin production.

These first human studies question the potential beneficial ef-

fects of irisin on metabolic status. However, prospective studies

that measure the direct effects of exercise on browning are re-

quired, and prospective studies should focus on aerobic exercise

protocols. In addition to the physiological release of irisin by exer-

cise, the therapeutic use of irisin in human clinical trials should be

investigated.

5.2. Natriuretic peptides and brown adipose tissue

A recent study showed that the cardiac natriuretic peptides

(NPs) are capable of browning white adipocytes from mice and hu-

mans (

Bordicchia et al., 2012



). The cardiac peptides, atrial NP (ANP)

and the ventricular form (BNP), are predominantly known for their

role in the homeostatic control of blood pressure, by promoting

vasodilatation, natriuresis and diuresis, and inhibiting renin and

aldosterone release (

Levin et al., 1998

). Later, these hormones were

also found to regulate lipolysis as demonstrated both in vitro as

in vivo

(

Sengenès et al., 2000



). Natriuretic peptides mediate these

lipolytic effects predominantly via the NP receptor A (NPRA),

whereas the clearance receptor (NPRC) removes the peptides from

the circulation. Binding of the NPs to the guanylyl cyclase receptor

NPRA leads to increased cellular cGMP, which stimulates lipolysis

by acting on HSL (

Sengenès et al., 2000

). These lipolytic effects of

the NPs were only observed in human WAT, and were thought to

be primate specific due to the high expression of clearance recep-

tors and a low expression of ‘‘biologically active’’ receptors in other

species (

Sengenès et al., 2002

).

This was confirmed in the study by



Bordicchia et al. (2012)

, in


which primary adipocyte cultures from wildtype mice showed no

lipolytic response upon ANP infusion. However, in NPRC knockout

mice they did find increased lipolysis in these adipocytes, indicat-

ing the inhibitory effects of this clearance receptor. Interestingly,

these knockout mice had reduced adipose tissue mass and a more

brownish adipose tissue phenotype. In support, brown adipocyte

marker genes, such as PRDM16, were elevated in both BAT and

WAT (inguinal and epididymal). These results indicated the brown-

ing effects on WAT via the NPs. It was then shown that exposing

mice to cold (4

° for 6 h) significantly increased plasma BNP levels,

and ANP and BNP mRNA expression in the heart. Furthermore, BNP

infusion in mice increased UCP-1 and PGC-1

a

mRNA expression in



both WAT and BAT (

Bordicchia et al., 2012

). Altogether, these data

demonstrate that the NPs have the capacity to enhance BAT activ-

ity and recruitment in mice in vitro and in vivo.

Do these NPs exert similar effects in humans? Administering

ANP systemically and via a microdialysis probe increased lipolysis

in healthy men (

Birkenfeld et al., 2005

). One functional role for the

lipolytic effects of NPs could be substrate supply of fatty acids to

the heart and muscle during aerobic exercise (

Moro et al., 2006

).

In addition, it is thought that the NPs are important regulators in



postprandial fatty acid oxidation in humans (

Birkenfeld et al.,

2008

). Interestingly, it is known in humans that low NP levels



are associated with hypertension, obesity, insulin resistance and

diabetes (

Khan et al., 2011; Magnusson et al., 2012

). Furthermore,

weight loss in obese subjects by lifestyle intervention (

Chainani-

Wu et al., 2010

) and bariatric surgery (

Changchien et al., 2011;

Chen-Tournoux et al., 2010; St Peter et al., 2006

) showed that

M.J. Vosselman et al. / Molecular and Cellular Endocrinology 379 (2013) 43–50

47


BNP levels are increased after weight loss. Interestingly patients

with heart failure who suffer from severe weight loss (cachexia)

have increased levels of both forms of NPs (

de Lemos et al.,

2003; Tikkanen et al., 1985

), and elevated energy expenditure lev-

els, and it could be suggested that elevated NP levels increase

brown adipocyte recruitment and activity leading to elevated EE.

Birkenfeld et al. (2005, 2008)

showed that ANP infusion increased

postprandial energy expenditure, however energy expenditure in

the fasted state was not affected. The dosage (25 ng/kg/min) of

ANP used by

Birkenfeld et al. (2008)

increased plasma ANP concen-

trations fourfold (approximately 300 pg/mL), which is lower than

found in heart failure patients (>500 pg/mL). This relative low dose

already affected lipid mobilization and postprandial thermogenesis

(and possibly BAT) without causing any adverse effects. Currently,

therapeutic use of NPs (carperitide and nesiritide) in patients with

acute heart failure and acutely decompensated heart failure is only

possible by means of infusion and not orally (

Saito, 2010

).

The potential effect of NPs on browning in humans has been



demonstrated in the study of Bordicchia et al., where they tested

whether NPs could induce a thermogenic gene program in differ-

entiated human multipotent adipose-derived stem (hMADS) cells

and subcutaneous adipocytes. Interestingly, both ANP and BNP

activated PGC-1

a

and UCP-1 expression, induced mitochondrial



biogenesis, and increased uncoupled and total respiration. These

findings imply the potential role of the NPs in increasing acute

thermogenesis and brown adipocyte recruitment in humans. They

demonstrated that the mechanism of action of the NP’s share a

common downstream target with the adrenergic pathway, namely

p38 MAPK. Activation of the p38 MAPK pathway ultimately leads

to increased transcription of UCP-1 and PGC-1

a

(



Bordicchia et al.,

2012


). Moreover, it was shown that ANP treatment of hMADS led

to a similar increase in UCP-1, PGC-1

a

, and cytochrome c protein



levels as shown during b-adrenergic treatment. The authors also

found that both the adrenergic and NP’s signaling pathways work

additive at very low (physiological) concentrations. The activation

pathway of the NPs could therefore play a prominent role in addi-

tion to the well-known adrenergic pathway in inducing both short-

term as long-term effects on BAT. Currently, this is the only direct

evidence of browning effects via NPs in humans and future studies

are warranted.

6. Conclusions and perspectives

The current global obesity problem is affecting more than 1.4

billion adults of 20 years and older, and strikingly, more than 40

million children under the age of five were overweight in 2010

(WHO). Obesity goes along with increased risk on developing dis-

eases such as type 2 diabetes and cardiovascular diseases. Finding

strategies to induce weight loss are therefore necessary. Currently,

brown adipose tissue is regarded as a potential tissue to tackle

obesity due to its great capacity to increase energy expenditure

and thereby stimulating weight loss. The rediscovery of functional

BAT in humans has resulted in an explosion of BAT studies, espe-

cially in rodents, to find potential molecules that could lead to

BAT hypertrophy and hyperplasia. It is now clear that a third type

of adipocyte exists, the beige adipocyte, which can be recruited

within WAT after cold acclimation and long-term adrenergic

receptor stimulation. This distinct type of adipocyte has shown

to arise from a different lineage as the other two types, although

functionally and metabolically seen it is similar to the brown adi-

pocyte. Current evidence shows that human BAT is likely com-

posed of mainly beige adipocytes.

Prospective studies in humans are scarce, mostly because of the

difficulties associated with the technique to measure BAT activity

(PET-CT). Nevertheless, current studies have shown that cold expo-

sure is the most effective in stimulating BAT in humans. Adjusting

ambient temperature in public buildings to the lower range of our

thermoneutral zone could therefore be a sensible and physiological

way to increase thermogenesis by increasing the thermogenic po-

tential of BAT. Adrenergic agonists (isoprenaline and ephedrine)

have not shown to be effective in BAT activation as high dosages

are required. This indicates that pharmacological activation of

BAT via the adrenergic part of the SNS is difficult. Furthermore, a

major drawback of adrenergic agonists and sympathomimetics is

the associated cardiovascular stress. Sympathetic activation via

capsinoids could be a way to increase energy expenditure and pos-

sibly weight loss (with low risks of adverse events), and the indi-

rect evidence of BAT being a mediator is promising. Insulin has

been shown to induce glucose uptake in BAT to higher levels than

WAT, and comparable to skeletal muscle. However, since perfusion

of BAT was absent, it remains unclear whether actual thermogen-

esis takes place after insulin stimulation.

Interestingly, studies in rodents have shown additional

pathways to activate BAT and recruit beige adipocytes. Two of

them – irisin and NPs – have recently attracted much attention,

but definitive answers in humans are so far lacking. Therefore,

the coming years are crucial in finding and testing novel activators

of BAT in human clinical trials, but most of all to test the hypoth-

esis that activation of BAT may indeed be of importance in the

treatment of human obesity. Furthermore, future studies should

also reveal if continuous activation of mitochondrial uncoupling

in BAT could lead to hyperthermia, as has previously been shown

to occur when dinitrophenol was used in humans to obtain weight

loss.


Acknowledgements

We would like to thank Boudewijn Brans for his helpful sugges-

tions and Anouk van der Lans for providing the PET-CT image.

References

al-Adsani, H., Hoffer, L., Silva, J., 1997. Resting energy expenditure is sensitive to

small dose changes in patients on chronic thyroid hormone replacement. J. Clin.

Endocrinol. Metab. 82, 1118–1125

.

Bartelt, A., Bruns, O.T., Reimer, R., Hohenberg, H., Ittrich, H., Peldschus, K., Kaul, M.G.,



Tromsdorf, U.I., Weller, H., Waurisch, C., Eychmüller, A., Gordts, P.L., Rinninger,

F., Bruegelmann, K., Freund, B., Nielsen, P., Merkel, M., Heeren, J., 2011. Brown

adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205

.

Birkenfeld, A., Boschmann, M., Moro, C., Adams, F., Heusser, K., Franke, G., Berlan, M.,



Luft, F., Lafontan, M., Jordan, J., 2005. Lipid mobilization with physiological atrial

natriuretic peptide concentrations in humans. J. Clin. Endocrinol. Metab. 90,

3622–3628

.

Birkenfeld, A., Budziarek, P., Boschmann, M., Moro, C., Adams, F., Franke, G., Berlan,



M., Marques, M., Sweep, F., Luft, F., Lafontan, M., Jordan, J., 2008. Atrial

natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57,

3199–3204

.

Bordicchia, M., Liu, D., Amri, E.-Z., Ailhaud, G., Dessì-Fulgheri, P., Zhang, C.,



Takahashi, N., Sarzani, R., Collins, S., 2012. Cardiac natriuretic peptides act via

p38 MAPK to induce the brown fat thermogenic program in mouse and human

adipocytes. J. Clin. Invest. 122, 1022–1036

.

Boström, P., Wu, J., Jedrychowski, M., Korde, A., Ye, L., Lo, J., Rasbach, K., Boström, E.,



Choi, J., Long, J., Kajimura, S., Zingaretti, M.C., Vind, B.F., Tu, H., Cinti, S., Højlund,

K., Gygi, S.P., Spiegelman, B.M., 2012. A PGC1-

a

-dependent myokine that drives



brown-fat-like development of white fat and thermogenesis. Nature 481, 463–

468


.

Cannon, B., Nedergaard, J., 2004. Brown adipose tissue: function and physiological

significance. Physiol. Rev. 84, 277–359

.

Carey, A.L., Formosa, M.F., Van Every, B., Bertovic, D., Eikelis, N., Labert, G.W., Kalff,



V., Duffy, S.J., Cherk, M.H., Kingwell, B.A., 2013. Ephedrine activates brown

adipose tissue in lean but not obese humans. Diabetologia 56, 147–155

.

Chainani-Wu, N., Weidner, G., Purnell, D., Frenda, S., Merritt-Worden, T., Kemp, C.,



Kersh, E., Ornish, D., 2010. Relation of B-type natriuretic peptide levels to body

mass index after comprehensive lifestyle changes. Am. J. Cardiol. 105, 1570–

1576

.

Changchien, E., Ahmed, S., Betti, F., Higa, J., Kiely, K., Hernandez-Boussard, T.,



Morton, J., 2011. B-type natriuretic peptide increases after gastric bypass

surgery and correlates with weight loss. Surg. Endosc. 25, 2338–2343

.

Chen-Tournoux, A., Khan, A., Baggish, A., Castro, V., Semigran, M., McCabe, E.,



Moukarbel, G., Reingold, J., Durrani, S., Lewis, G., Newton-Cheh, C., Scherrer-

48

M.J. Vosselman et al. / Molecular and Cellular Endocrinology 379 (2013) 43–50



Crosbie, Kaplan, L.M., Wang, T.J., 2010. Effect of weight loss after weight loss

surgery on plasma N-terminal pro-B-type natriuretic peptide levels. Am. J.

Cardiol. 106, 1450–1455

.

Christiansen, E., Garby, L., 2002. Prediction of body weight changes caused by



changes in energy balance. Eur. J. Clin. Invest. 32, 826–830

.

Cinti, S., 2001. The adipose organ: morphological perspectives of adipose tissues.



Proc. Nutr. Soc. 60, 319–328

.

Cinti, S., 2002. Adipocyte differentiation and transdifferentiation: Plasticity of the



adipose organ. J. Endicrinol. Invest. 25, 823–825

.

Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A.B., Kuo, F.C.,



Palmer, E.L., Tseng, Y.H., Doria, A., Kolodny, G.M., Kahn, C.R., 2009. Identification

and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360,

1509–1517

.

Cypess, A.M., Chen, Y.C., Sze, C., Wang, K., English, J., Chan, O., Holman, A.R., Tal, I.,



Palmer, M.R., Kolodny, G.M., Kahn, C.R., 2012. Cold but not sympathomimetics

activates human brown adipose tissue in vivo. Proc. Natl. Acad. Sci. USA 109,

10001–10005

.

Davis, T., 1961. Chamber cold acclimatization in man. J. Appl. Physiol. 16, 1011–



1015

.

de Lemos, J., McGuire, D., Drazner, M., 2003. B-type natriuretic peptide in



cardiovascular disease. Lancet 362, 316–322

.

De Matteis, R., Lucertini, F., Guescini, M., Polidori, E., Zeppa, S., Stocchi, V., Cinti, S.,



Cuppini, R., 2012. Exercise as a new physiological stimulus for brown adipose

tissue activity. Nutr. Metab. Cardiovac. Dis. (Epub ahead of print)

.

Feldmann, H.M., Golozoubova, V., Cannon, B., Nedergaard, J., 2009. UCP1 ablation



induces obesity and abolishes diet-induced thermogenesis in mice exempt from

thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209

.

Frontini, A., Cinti, S., 2010. Distribution and development of brown adipocytes in the



murine and human adipose organ. Cell Metab. 11, 253–256

.

Galgani, J., Ravussin, E., 2010. Effect of dihydrocapsiate on testing metabolic rate in



humans. Am. J. Clin. Nutr. 92, 1089–1093

.

Guerra, C., Navarro, P., Valverde, A., Arribas, M., Brüning, J., Kozak, L., Kahn, C.,



Benito, M., 2001. Brown adipose tissue-specific insulin receptor knockout

shows diabetic phenotype without insulin resistance. J. Clin. Invest. 108, 1205–

1213

.

Gunawardana, S.C., Piston, D.W., 2012. Reversal of type 1 diabetes in mice by brown



adipose tissue transplant. Diabetes 61, 674–682

.

Hadi, M., Chen, C., Whatley, M., Pacak, K., Carrasquillo, J., 2007. Brown fat imaging



with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG

SPECT: a study of patients being evaluated for pheochromocytoma. J. Nucl.

Med. 48, 1077–1083

.

Handschin, C., Spiegelman, B., 2008. The role of exercise and PGC1alpha in



inflammation and chronic disease. Nature 454, 463–469

.

Heaton, J., 1972. The distribution of brown adipose tissue in the human. J. Anat. 112,



35–39

.

Hirata, K., 1982a. Blood flow to brown adipose tissue and norepinephrine-induced



calorigenesis in physically trained rats. Jpn. J. Physiol. 32, 279–291

.

Hirata, K., 1982b. Enhanced calorigenesis in brown adipose tissue in physically



trained rats. Jpn. J. Physiol. 32, 647–653

.

Huh, J., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M., Schneider, B.,



Mantzoros, C., 2012. FNDC5 and irisin in humans: I. Predictors of circulating

concentrations in serum and plasma and II. mRNA expression and circulating

concentrations in response to weight loss and exercise. Metabolism 61, 1725–

1738


.

Joshi, P., Lele, V., 2012. Unexpected visitor on FDG PET/CT-Brown Adipose Tissue

(BAT)

in

mesentery



in

a

case



of

retroperitoneal

extra-adrenal

pheochromocytoma: is the BAT activation secondary to catecholamine-

secreting pheochromocytoma? Clin. Nucl. Med. 37, 20

.

Kawabata, F., Inoue, N., Masamoto, Y., Matsumura, S., Kimura, W., Kadowaki, M.,



Higashi, T., Tominaga, M., Inoue, K., Fushiki, T., 2009. Non-pungent capsaicin

analogs (capsinoids) increase metabolic rate and enhance thermogenesis via

gastrointestinal TRPV1 in mice. Biosci. Biotechnol. Biochem. 73, 2690–2697

.

Khan, A., Cheng, S., Magnusson, M., Larson, M., Newton-Cheh, C., McCabe, E.,



Coviello, A., Florez, J., Fox, C., Levy, D., Robins, S.J., Arora, P., Bhasin, S., Lam, C.S.,

Vasan, R.S., Melander, O., Wang, T.J., 2011. Cardiac natriuretic peptides, obesity,

and insulin resistance: evidence from two community-based studies. J. Clin.

Endocrinol. Metab. 96, 3242–3249

.

Kuji, I., Imabayashi, E., Minagawa, A., Matsuda, H., Miyauchi, T., 2008. Brown



adipose tissue demonstrating intense FDG uptake in a patient with mediastinal

pheochromocytoma. Ann. Nucl. Med. 22, 231–235

.

Lebon, V., 2001. Effect of triiodothyronine on mitochondrial energy coupling in



human skeletal muscle. J. Clin. Invest. 108

.

Lebron, L., Chou, A., Carrasquillo, J., 2010. Interesting image. Unilateral F-18 FDG



uptake in the neck, in patients with sympathetic denervation. Clin. Nucl. Med.

35, 899–901

.

Lecker, S., Zavin, A., Cao, P., Arena, R., Allsup, K., Daniels, K., Joseph, J., Schulze, P.,



Forman, D., 2012. Expression of the irisin precursor FNDC5 in skeletal muscle

correlates with aerobic exercise performance in patients with heart failure. Circ.

Heart. Fail. 5, 812–818

.

Levin, E., Gardner, D., Samson, W., 1998. Natriuretic peptides. N. Engl. J. Med. 339,



321–328

.

Lowell, B.B., Spiegelman, B.M., 2000. Towards a molecular understanding of



adaptive thermogenesis. Nature 404, 652–660

.

Magnusson, M., Jujic, A., Hedblad, B., Engström, G., Persson, M., Struck, J.,



Morgenthaler, N., Nilsson, P., Newton-Cheh, C., Wang, T., Melander, O., 2012.

Low plasma level of atrial natriuretic peptide predicts development of diabetes:

the prospective Malmo Diet and Cancer study. J. Clin. Endocrinol. Metab. 97,

638–645


.

Mitchell, C., Savage, D., Dufour, S., Schoenmakers, N., Murgatroyd, P., Befroy, D.,

Halsall, D., Northcott, S., Raymond-Barker, P., Curran, S., Henning, E., Keogh, J.,

Owen, P., Lazarus, J., Rothman, D.L., Farooqi, I.S., Shulman, G.I., Chatterjee, K.,

Petersen, K.F., 2010. Resistance to thyroid hormone is associated with raised

energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J. Clin.

Invest. 120, 1345–1354

.

Moro, C., Polak, J., Hejnova, J., Klimcakova, E., Crampes, F., Stich, V., Lafontan, M.,



Berlan, M., 2006. Atrial natriuretic peptide stimulates lipid mobilization during

repeated bouts of endurance exercise. Am. J. Physiol. Endocrinol. Met. 290,

E864–869

.

Oh-ishi, S., Kizaki, T., Toshinai, K., Haga, S., Fukuda, K., Nagata, N., Ohno, H., 1996.



Swimming training improves brown-adipose-tissue activity in young and old

mice. Mech. Ageing Dev. 89, 67–78

.

Ono, K., Tsukamoto-Yasui, M., Hara-Kimura, Y., Inoue, N., Nogusa, Y., Okabe, Y.,



Nagashima, K., Kato, F., 2011. Intragastric administration of capsiate, a transient

receptor potential channel agonist, triggers thermogenic sympathetic

responses. J. Appl. Physiol. 110, 789–798

.

Orava, J., Nuutila, P., Lidell, M., Oikonen, V., Noponen, T., Viljanen, T., Scheinin, M.,



Taittonen, M., Niemi, T., Enerbäck, S., Virtanen, K.A., 2011. Different metabolic

responses of human brown adipose tissue to activation by cold and insulin. Cell

Metab. 14, 272–279

.

Ouellet, V., Labbé, S., Blondin, D., Phoenix, S., Guérin, B., Haman, F., Turcotte, E.,



Richard, D., Carpentier, A., 2012. Brown adipose tissue oxidative metabolism

contributes to energy expenditure during acute cold exposure in humans. J.

Clin. Invest. 122, 545–552

.

Parysow, O., Mollerach, A.M., Jager, V., Racioppi, S., San Roman, J., Gerbaudo, V.H.,



2007. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG

uptake in patients undergoing PET scans. Clin. Nucl. Med. 32, 351–357

.

Petrovic, N., Walden, T., Shabalina, I., Timmons, J., Cannon, B., Nedergaard, J., 2010.



Chronic peroxisome proliferator-activated receptor gamma (PPARgamma)

activation of epididymally derived white adipocyte cultures reveals a

population of thermogenically competent, UCP1-containing adipocytes

molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–

7164

.

Saito, Y., 2010. Roles of atrial natriuretic peptide and its therapeutic use. J. Cardiol.



56, 262–270

.

Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshiro, T., Nio-



Kobayashi, J., Iwanaga, T., Miyagawa, M., Kameya, T., Nakada, K., Kawai, Y.,

Tsujisaki, M., 2009. High incidence of metabolically active brown adipose tissue

in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58,

1526–1531

.

Scarpace, P., Yenice, S., Tümer, N., 1994. Influence of exercise training and age on



uncoupling protein mRNA expression in brown adipose tissue. Pharmacol.

Biochem. Behav. 49, 1057–1105

.

Seebacher, F., Glanville, E., 2010. Low levels of physical activity increase metabolic



responsiveness to cold in a rat (Rattus fuscipes). PLoS ONE 5, e13022

.

Segawa, M., Oh-Ishi, S., Kizaki, T., Ookawara, T., Sakurai, T., Izawa, T., Nagasawa, J.,



Kawada, T., Fushiki, T., Ohno, H., 1998. Effect of running training on brown

adipose tissue activity in rats: a reevaluation. Res. Commun. Mol. Pathol.

Pharmacol. 100, 77–82

.

Sengenès, C., Berlan, M., De Glisezinski, I., Lafontan, M., Galitzky, J., 2000. Natriuretic



peptides: a new lipolytic pathway in human adipocytes. FASEB J. 14, 1345–

1351


.

Sengenès, C., Zakaroff-Girard, A., Moulin, A., Berlan, M., Bouloumié, A., Lafontan, M.,

Galitzky, J., 2002. Natriuretic peptide-dependent lipolysis in fat cells is a

primate specificity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R257–265

.

Sharp, L., Shinoda, K., Ohno, H., Scheel, D., Tomoda, E., Ruiz, L., Hu, H., Wang, L.,



Pavlova, Z., Gilsanz, V., Kajimura, S., 2012. Human BAT possesses molecular

signatures that resemble beige/brite cells. PLoS ONE 7, e49452

.

Shibata, H., Nagasaka, T., 1987. The effect of forced running on heat production in



brown adipose tissue in rats. Physiol. Behav. 39, 377–380

.

Silva, J., 2006. Thermogenic mechanisms and their hormonal regulation. Physiol.



Rev. 86, 435–464

.

Slocum, N., Durrant, J., Bailey, D., Yoon, L., Jordan, H., Barton, J., Brown, R., Clifton, L.,



Milliken, T., Harrington, W., Kimbrough, C., Faber, C.A., Cariello, N., Elangbam,

C.S., 2012. Responses of brown adipose tissue to diet-induced obesity, exercise,

dietary restriction and ephedrine treatment. Exp. Toxicol. Pathol. (Epub ahead

of print)

.

Soderlund, V., Larsson, S.A., Jacobsson, H., 2007. Reduction of FDG uptake in brown



adipose tissue in clinical patients by a single dose of propranolol. Eur. J. Nucl.

Med. Mol. Imaging 34, 1018–1022

.

St Peter, J., Hartley, G., Murakami, M., Apple, F., 2006. B-type natriuretic peptide



(BNP) and N-terminal pro-BNP in obese patients without heart failure:

relationship to body mass index and gastric bypass surgery. Clin. Chem. 52,

680–685

.

Tikkanen, I., Fyhrquist, F., Metsärinne, K., Leidenius, R., 1985. Plasma atrial



natriuretic peptide in cardiac disease and during infusion in healthy

volunteers. Lancet 2, 66–69

.

Timmons, J.A., Baar, K., Davidsen, P.K., Atherton, P.J., 2012. Is irisin a human exercise



gene? Nature 480, E9–10

.

van Marken Lichtenbelt, W., Schrauwen, P., 2011. Implications of nonshivering



thermogenesis for energy balance regulation in humans. Am. J. Physiol. Regul.

Integr. Comp. Physiol. 301, 96

.

M.J. Vosselman et al. / Molecular and Cellular Endocrinology 379 (2013) 43–50



49

van Marken Lichtenbelt, W.D., Vanhommerig, J.W., Smulders, N.M., Drossaerts, J.M.,

Kemerink, G.J., Bouvy, N.D., Schrauwen, P., Teule, G.J., 2009. Cold-activated

brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508

.

Vijgen, G.H., Bouvy, N.D., Teule, G.J., Brans, B., Schrauwen, P., van Marken



Lichtenbelt, W.D., 2011. Brown adipose tissue in morbidly obese subjects.

PLoS ONE 6, e17247

.

Vijgen, G., Bouvy, N., Teule, G.J., Brans, B., Hoeks, J., Schrauwen, P., van Marken



Lichtenbelt, W., 2012. Increase in brown adipose tissue activity after weight loss

in morbidly obese subjects. J. Clin. Endocrinol. Metab. 97, E1229–1233

.

Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen,



M., Laine, J., Savisto, N.J., Enerback, S., Nuutila, P., 2009. Functional brown

adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525

.

Vosselman, M.J., van der Lans, A.A., Brans, B., Wierts, R., van Baak, M.A., Schrauwen,



P., Lichtenbelt, W.D., 2012. Systemic b-adrenergic stimulation of thermogenesis

is not accompanied by brown adipose tissue activity in humans. Diabetes 61,

3106–3113

.

Waldén, T., Hansen, I., Timmons, J., Cannon, B., Nedergaard, J., 2012. Recruited vs.



nonrecruited molecular signatures of brown, ‘‘brite’’, and white adipose tissues.

Am. J. Physiol. Endocrinol. Metab. 302, E19–31

.

Whiting, S., Derbyshire, E., Tiwari, B., 2012. Capsaicinoids and capsinoids. A



potential role for weight management? A systematic review of the evidence.

Appetite 59, 341–348

.

Whittle, A.J., 2012. Searching for ways to switch on brown fat: are we getting



warmer? J. Mol. Endocrinol. 49, 79–87

.

Whittle, A.J., Vidal-Puig, A., 2012. NPs – heart hormones that regulate brown fat? J.



Clin. Invest. 122, 804–807

.

Wickler, S., Stern, J., Glick, Z., Horwitz, B., 1987. Thermogenic capacity and brown fat



in rats exercise-trained by running. Metabolism 36, 76–81

.

Wu, J., Boström, P., Sparks, L., Ye, L., Choi, J., Giang, A.-H., Khandekar, M., Virtanen, K.,



Nuutila, P., Schaart, G., Huang, K., Tu, H., van Marken Lichtenbelt, W.D., Hoeks, J.,

Enerbäck, S., Schrauwen, P., Spiegelman, B.M., 2012. Beige adipocytes are a

distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376

.

Xu, X., Ying, Z., Cai, M., Xu, Z., Li, Y., Jiang, S., Tzan, K., Wang, A., Parthasarathy, S., He,



G., Rajagopalan, S., Sun, Q., 2011. Exercise ameliorates high-fat diet-induced

metabolic and vascular dysfunction, and increases adipocyte progenitor cell

population in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol.

300, R1115–R1125

.

Yamaga, L., Thom, A., Wagner, J., Baroni, R., Hidal, J., Funari, M., 2008. The effect of



catecholamines on the glucose uptake in brown adipose tissue demonstrated by

(18)F-FDG PET/CT in a patient with adrenal pheochromocytoma. Eur. J. Nucl.

Med. Mol. Imaging 35, 446–447

.

Yoneshiro, T., Aita, S., Matsushita, M., Kameya, T., Nakada, K., Kawai, Y., Saito, M.,



2011. Brown adipose tissue, whole-body energy expenditure, and

thermogenesis in healthy adult men. Obesity (Silver Spring) 19, 13–16

.

Yoneshiro, T., Aita, S., Kawai, Y., Iwanaga, T., Saito, M., 2012. Nonpungent capsaicin



analogs (capsinoids) increase energy expenditure through the activation of

brown adipose tissue in humans. Am. J. Clin. Nutr. 95, 845–850

.

Young, P., Arch, J., Ashwell, M., 1984. Brown adipose tissue in the parametrial fat



pad of the mouse. FEBS Lett. 167, 10–14

.

Zingaretti, M.C., Crosta, F., Vitali, A., Guerrieri, M., Frontini, A., Cannon, B.,



Nedergaard, J., Cinti, S., 2009. The presence of UCP1 demonstrates that

metabolically active adipose tissue in the neck of adult humans truly

represents brown adipose tissue. FASEB J. 23, 3113–3120

.

50



M.J. Vosselman et al. / Molecular and Cellular Endocrinology 379 (2013) 43–50

Review

Thyroid hormones and mitochondria: With a brief look at derivatives

and analogues

Federica Cioffi

a

,

1



, Rosalba Senese

b

,



1

, Antonia Lanni

b

,



, Fernando Goglia

a

,



a

Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, 82100 Benevento, Italy



b

Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy

a r t i c l e i n f o

Article history:

Available online 13 June 2013

Keywords:

Mitochondrion

Thyroid hormone

Iodothyronine

Thyroid hormone analogue

a b s t r a c t

Thyroid hormones (TH) have a multiplicity of effects. Early in life, they mainly affect development and differ-

entiation, while later on they have particularly important influences over metabolic processes in almost all tis-

sues. It is now quite widely accepted that thyroid hormones have two types of effects on mitochondria. The

first is a rapid stimulation of respiration, which is evident within minutes/hours after hormone treatment,

and it is probable that extranuclear/non-genomic mechanisms underlie this effect. The second response occurs

one to several days after hormone treatment, and leads to mitochondrial biogenesis and to a change in mito-

chondrial mass. The hormone signal for the second response involves both T3-responsive nuclear genes and a

direct action of T3 at mitochondrial binding sites. T3, by binding to a specific mitochondrial receptor and

affecting the transcription apparatus, may thus act in a coordinated manner with the T3 nuclear pathway

to regulate mitochondrial biogenesis and turnover. Transcription factors, coactivators, corepressors, signaling

pathways and, perhaps, all play roles in these mechanisms. This review article focuses chiefly on TH, but also

looks briefly at some analogues and derivatives (on which the data is still somewhat patchy). We summarize

data obtained recently and in the past to try to obtain an updated picture of the current research position con-

cerning the metabolic effects of TH, with particular emphasis on those exerted via mitochondria.

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

Contents

1.

Thyroid hormones and iodothyronines: the general picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



2.

Actions of thyroid hormones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.

Overview of nuclear pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



2.2.

Overview of non-nuclear pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.

Mitochondria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



3.1.

Mitochondrial plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.

Thyroid hormones and mitochondria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.1.

Direct way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.

Indirect ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



5.

Thyroid hormones and mitochondrial energetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.

Uncoupling mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



5.2.

Other mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.

Thyroid hormone derivatives and analogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



6.1.

Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.

Analogues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



7.

Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1.

Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

0303-7207/$ - see front matter

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.mce.2013.06.006

Corresponding authors. Tel.: +39 0823 274542; fax: +39 0823 274545 (A.



Lanni), tel.: +39 0823 274571; fax: +39 0824 23013 (F. Goglia).

E-mail addresses:

antonia.lanni@unina2.it

(A. Lanni),

goglia@unisannio.it

(F. Goglia).

1

These authors contributed equally to the manuscript.



Molecular and Cellular Endocrinology 379 (2013) 51–61

Contents lists available at

SciVerse ScienceDirect

Molecular and Cellular Endocrinology

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m c e


1. Thyroid hormones and iodothyronines: the general picture

The thyroid gland produces two main iodothyronines: 3,5,3

0

,5

0



-

tetraiodothyronine (thyroxine or T4) and 3,5,3

0

-triiodo-



L

-thyronine

(T3). TH release from the thyroid occurs as part of a feedback mech-

anism involving the pituitary–hypothalamic axis. At any given

time, most T4 and T3 in the body is bound to transport proteins,

with only a small, ‘‘unbound’’ or ‘‘free’’, fraction being biologically

active. The functions of these proteins most probably include: (a)

ensuring a constant supply of TH to the cells and tissues by prevent-

ing urinary loss, (b) protecting the organism against abrupt changes

in thyroid-hormone production and/or degradation, and (c) ulti-

mately protecting against iodine deficiency.

All the circulating T4 is secreted by the thyroid gland, whereas

most (about 80%) of the systemic T3 is generated by deiodination

of T4 within peripheral tissues. T3 is further deiodinated to yield

3,3

0

-T2 and also, perhaps, 3,5-T2.



Thyroid-hormone deiodination is mediated by three iodothyro-

nine deiodinases: type I deiodinase (D1), preferentially expressed

in the liver but also present in kidney, thyroid, and pituitary; type

II deiodinase (D2), present in the central nervous system, anterior

pituitary, brown adipose tissue, and placenta; type III deiodinase

(D3), present in the central nervous system, placenta, skin, and fe-

tal tissue. For further details on deiodinases, the reader is referred

to

Orozco et al., 2012; Dentice and Salvatore, 2011; Bianco, 2011



.

As mentioned above, T4 is synthesized entirely within the thy-

roid, while approximately 80% of T3 is formed by peripheral con-

version of T4. Uptake of TH into peripheral tissues is mediated by

specific membrane transporter proteins. Several transporter fami-

lies have been identified, among which the monocarboxylate

transporter (MCT) family deserves special attention. Fourteen

members of this family have been recognized so far, but in only

6 of them has a ligand-binding site been identified. MCT8 and

MCT10 have been identified as specific TH transporters. However,

while MCT8 is currently known to be highly specific only for TH

(

Friesema et al., 2003



), MCT10 also has the ability to carry different

types of amino acid [e.g., the carrier polypeptide of various organic

anion transporters (OATP1C1, OATP1A2, OPTP1A4)]. Among the

OATPs, OATP1C1 is the most interesting for the present purposes

because it displays high specificity and affinity for certain iodothy-

ronines (especially for T4 and rT3, although not for T3). Moreover,

its preferential localization within the endothelium of brain capil-

laries suggests that OATP1C1 is important for the transport of TH

across the blood–brain barrier (

Mayerl et al., 2012

). The physiolog-

ical roles performed by the TH transporters have been discussed in

recent reviews (

Kinne et al., 2011; Visser et al., 2011

) and so will

not be described here any further.

2. Actions of thyroid hormones

TH act via two distinct pathways: (1) nuclear pathways and (2)

non-nuclear pathways.

2.1. Overview of nuclear pathways

At the beginning of the 1960s, Tata and coworkers were the first

to show that administration of TH to hypothyroid rats induced an

increase in their basal metabolic rate, while the simultaneous

injection of an inhibitor of transcription (such as actinomycin-D)

inhibited this effect (

Tata, 1963

). These data implicated the nucleus

as the locus for the above action. In other experiments, using iso-

lated nuclei, they showed that T3 stimulated DNA-dependent

RNA-polymerase activity. Later, Samuels et al. and Oppenheimer

et al. identified high-affinity nuclear binding sites for TH, suggest-

ing that thyroid hormone nuclear receptors (TR) mediated the

effects of T3 (

Tata et al., 1962; Tata et al., 1963; Samuels et al.,

1974; Oppenheimer et al., 1974; Bassett et al., 2003

). In the ensu-

ing years, efforts were made to purify the receptors, but the results

did not allow detailed investigation of their molecular properties

until the simultaneous cloning of the receptors by

Sap et al.

(1986)

and


Weinberger et al. (1986)

. In mammals, two genes,

TRalpha and TRbeta, encode several thyroid-receptor isoforms

(TRalpha1, the two splicing variants TRalpha2 and TRalpha3;

TRbeta1, TRbeta2, and TRbeta3, respectively). All TRbeta isoforms

retain T3-binding activity, whereas only TRalpha1 of the TRalpha

isoforms possesses binding activity. The existence of various iso-

forms of TRs raises the question as to whether they have distinct

or redundant roles. Their tissue-dependent expressions and devel-

opmentally regulated differential expression suggest that they

mediate specific isoform-dependent actions. In view of their

substantial amino-acid homology with respect to steroid hormone

receptors, all TR isoforms are considered to be members of the

large superfamily of nuclear receptors that also includes the recep-

tors for retinoic acid, vitamin D and peroxisomal proliferator acti-

vators. These receptors contain multiple functional domains that

include, in particular, a DNA-binding domain (DBD) and a car-

boxyl-terminal ligand-binding domain (LBD). The DBD domain

contains about 70 amino acids forming two ‘‘zinc fingers’’. This

region is highly conserved and interacts with the specific DNA seg-

ments known as ‘‘thyroid-hormone response-elements’’ (TREs). T3

receptors are transcription factors: they modulate transcription

mainly by binding TREs. In the absence of T3, the TR has an intrin-

sic transcriptional repressor function. In most cases, the TRs act as

heterodimers with a 9-cis retinoic acid receptor (RXR), but there

are also multiple TR complexes that bind to TREs (

Farach-Carson

and Davis, 2003

). In addition to RXR, many other molecules are di-

rectly or indirectly functionally associated with TRs (vitamin D3,

peroxisome proliferator-activated receptor (PPAR), corepressors,

coactivators, etc.). The transcriptional activity of TRs is regulated

at multiple levels: by T3 itself; by the type of TRE located on the

promoters of T3 target genes; by the developmental- and

tissue-dependent expressions of TR isoforms; and by a host of

nuclear coregulatory factors (coactivators and corepressors) with

T3-dependent activity. Deeper consideration of these mechanisms

can be found in some recent reviews (

Oetting and Yen, 2007; Yen

et al., 2006; Cheng et al., 2010; Flamant and Gauthier, 2012; Tata,

2012

).

2.2. Overview of non-nuclear pathways



A number of effects mediated by iodothyronines have been de-

scribed for which a binding to TRs can be excluded, and it is cur-

rently assumed that these effects involve extranuclear binding

sites in several compartments of the cell (including the plasma

membrane, the cytoskeleton, the cytoplasm, and mitochondria:

for review, see

Cheng et al., 2010

). Unlike the nuclear effects, the

extranuclear ones: (i) are independent of thyroid hormone nuclear

receptors; (ii) may occur within a short time (seconds to minutes);

and (iii) may be mediated by signal-transducing pathways such as

cAMP and protein kinases (

Bassett et al., 2003; Farach-Carson and

Davis, 2003; Saelim et al., 2004; Axelband et al., 2011

). Some stud-

ies have demonstrated that plasma membrane-initiated actions

begin at a binding site on integrin

a

Vb3, a heterodimer protein that



interacts both with extracellular matrix proteins and thyroid

hormones (

Bergh et al., 2005; Cody et al., 2007

). Other molecules

– such as stilbene, resveratrol (

Lin et al., 2007, 2008

), and dihydro-

testosterone (

Lin et al., 2009a

) – also bind to this integrin (

Davis

et al., 2009



).

Lin et al. (2009b)

demonstrated that the hormone-

binding domain comprises two binding sites. One site is solely

for the binding of T3 and activates the phosphatidylinositol 3-ki-

nase (PI3K) pathway, leading to cytoplasm-to-nucleus shuttling

52

F. Cioffi et al. / Molecular and Cellular Endocrinology 379 (2013) 51–61



of TRa1 and to transcription of the hypoxia-inducible factor-1a

gene. The second site binds both T3 and T4 and appears to trigger

PKC, Ras, Raf1, and MEK, resulting in tyrosine phosphorylation,

activation, and nuclear translocation of MAPK (

Lin et al., 2009a;

Lin et al., 2009b

; for review, see

Cheng et al., 2010

). It is known that

TH affect cellular calcium homeostasis, and this effect is probably

due to a nongenomic action. In fact, a recent study on GH3 cells

showed that both T2 and T3 exert short-term nongenomic effects

on intracellular calcium by modulating plasma-membrane and

mitochondrial pathways (

Del Viscovo et al., 2012

). Those authors

showed that nimodipine largely prevented the [Ca

2+

]



i

increases

elicited by T2 and T3, suggesting that these two iodothyronines

share L-type VDCC as a plasma-membrane target. Clear nonge-

nomic actions have been reported that involve AMP-activated

protein kinase (AMPK) (

Irrcher et al., 2008

) and Akt/protein kinase

B (

Moeller et al., 2005



). In skeletal muscle in vivo, T3 stimulates

both fatty acid and glucose metabolism through rapid activations

of the associated signaling pathways involving AMPK and Akt/pro-

tein kinase B (

de Lange et al., 2008

). (For a short summary of nucle-

ar/non-nuclear pathways of TH see

Table 1


).

3. Mitochondria

The evidence that TH affects metabolic rate dates back a long

way. However, despite this and the increasing knowledge of the

physiology and mechanism of action of TH, several aspects of their

effects on metabolic rate (also called calorigenic effects) remain to

be elucidated. The existing evidence and the current debate are fo-

cused on two possible mechanisms that might underlie the calor-

igenic effects of TH: (a) a mechanism involving their interaction

with nuclear receptors (TR) and (b) a mechanism involving both

TR and/or certain cellular sites such as mitochondria and the cell

membrane. Actually, both pathways may have cellular respiration

as their ultimate target. Mitochondria, because of their known

physiological functions, have been and continue to be the target

of most studies on the calorigenic effects of TH. Mitochondria, in

fact, provide about the 90% of the cellular energy supply, and they

are also the headquarters for a multitude of biochemical pathways

related to metabolism (for details, see

Fig. 1

). Indeed, besides ATP



synthesis, mitochondria are the site of other important biochemi-

cal events such as oxidation of fatty acids, production of free

Table 1

Some information about nuclear and non-nuclear pathways of TH actions.(For references see text).



Nuclear pathways

Non-nuclear signaling pathways

Nuclear Thyroid Hormone Receptors (TR):

– cAMP-activated protein kinase (AMPK)

TR-


a

(TR-


a

1, TR-


a

2 e TR-


a

3)



TR- b (TR-b1, TR-b2 e TR-b3)

– TRs act as heterodimers [with i.e.: retinoid X receptor (RXR), peroxisome proliferator-activated

receptors (PPARs) and vitamin D3]

– Akt/protein kinase B

– Corepressor [silencing mediator of TH and retinoid action (SMRT) and nuclear corepressor

(NCoR)]


– Phosphatidylinositol 3-kinase (PI3K)

– Coactivators [p300, steroid receptor coactivator 1 (SRC-1) and Trip230]

– PKC, Ras, Raf1, MEK resulting in activation of mitogen-acti-

vated protein kinase (MAPK)

Fig. 1. Schematic representation of most of the mitochondrial activities and functions. The respiratory chain transfers electrons from reduced coenzymes [coming from intra

(b-oxidation and TCA cycle) – and extra-mitochondrial (glycolysis) oxidative pathways] to O

2

and, pumping out H+ from the matrix to the intermembrane space, generates an



electrochemical gradient, D

l

H+, which provides the driving force for ATP synthesis by FoF1-ATPase. H+ can also enter the matrix by mechanisms not coupled to ATP



synthesis either directly, across the lipid bilayer, or indirectly, by protein-mediated transport (mechanism not represented). Phosphate carrier (PiC), ADP/ATP carrier (ANT),

and Uncoupling protein (UCP) are represented individually. Mitochondrial calcium uniporter (MCU). Anion carriers (ACs). Translocator Inner Membrane (TIM), Translocator

Outer Membrane (TOM), mitochondrial transcription factor A (mtTFA), Apoptosis-inducing factor (AIF). For further details, see text.

F. Cioffi et al. / Molecular and Cellular Endocrinology 379 (2013) 51–61

53


radical, heme synthesis, the metabolism of some amino acids, the

formation and export of Fe/S clusters, iron metabolism, and cal-

cium homeostasis. Very recently, the inner-membrane mitochon-

drial calcium uniporter has been identified as the channel

responsible for ruthenium-red-sensitive mitochondrial Ca

2+

uptake



(

De Stefani et al., 2011

). In addition, mitochondria contribute to

many processes central to both cellular function and dysfunction,

including calcium signaling, cell growth and differentiation, cell-

cycle control, and cell death.

Mitochondria utilize metabolic substrates to generate ATP. Such

ATP synthesis, which occurs via ATPase complex, is coupled to oxy-

gen consumption via the proton electrochemical gradient existing

across the inner mitochondrial membrane. The inner mitochon-

drial membrane might be expected to be proton-proof and the

mechanism to be tightly coupled, but actually the coupling is not

perfect, and the proton flux across the inner membrane that is

not coupled to ATP synthesis (the so-called proton leak) dissipates

part of the gradient as heat.

3.1. Mitochondrial plasticity

Mitochondrial shape and their positioning within cells is crucial

and is tightly regulated by processes of fission and fusion, biogen-

esis and autophagy, thus ensuring a relatively stable mitochondrial

population (

Hailey et al., 2010; Osellame et al., 2012

.) In addition,

mitochondria are known to be involved in apoptosis, and some

recent data show that they are involved in many other cellular

pathways, such as the recently highlighted ones that participate

in innate immune responses (

West et al., 2011

). The number of

mitochondria varies according to the function of the cell-type

and to the physiological state of the cell/organism. The mecha-

nisms underlying mitochondrial turnover (i.e., biogenesis,

degradation, autophagy) are now quite well elucidated, at least

in some respects. The process of mitochondrial biogenesis requires

the coordination of mitochondrial and nuclear genomes. In fact, the

mitochondrial proteome includes about 1500 proteins, most of

which are coded by the nuclear genome, with only 13 being coded

by the mitochondrial genome. Accordingly, the biogenesis, abun-

dance, morphology, and physiological properties of mitochondria

are regulated primarily by the nuclear genome through a series

of transcription factors that regulate the activity of the mitochon-

drial genome and the expressions of mitochondrial proteins (see

Fig. 2


).

In recent decades, our knowledge regarding the dynamics of

these organelles has greatly improved. Indeed, the old view of iso-

lated mitochondria as static bean-shaped organelles is agonizing

and is now replaced by the view of a dynamic and branched net-

work moving throughout the cell and undergoing structural transi-

tions and changing the shape, morphology, and size. These changes

depend on the cell-type and on the cell’s status (for review, see

Lie-

sa et al., 2009



). In mitochondria, plasticity and function are interre-

lated since plasticity may affect the activity of the organelles, while

their function/dysfunction may affect their morphology and

dynamics (

Kuznetsov et al., 2009

). These changes are tightly regu-

lated by the balance between ‘‘fusion’’ and ‘‘fission’’, and determine

the appearance of the dynamic organelles, their composition, and

finally their activities and functions (

Michel et al., 2012

). The prin-

cipal elements participating in these events are:

For fusion

:

– Mitofusin 1 and 2 (MFN1 and MFN2), which are located in the



outer mitochondrial membrane and form homo- and hetero-

oligomeric complexes between apposing mitochondria (

Koshi-

ba et al., 2004; Meeusen et al., 2004; Chen et al., 2005; Detmer



Fig. 2. Schematic representation of the TH-dependent nucleus–mitochondrion cross-talk in the regulation of mitochondrial functions (biogenesis, oxygen consumption, and

gene expression). Trough active transport or passive diffusion, TH move from outside the plasma membrane into the cytoplasm approaching the extra-nuclear as well as the

extra-mitochondrial space. In the cytoplasm, several events can occur, among which deiodination and binding to cytosolic proteins (i.e. cytosolic TH receptors). These can

activate signal transduction pathways involving MAPKs, PKC and PI3-K-AKT/PKB. Genomic action requires thyroid hormone responsive elements (TREs) for the recognition of

genes for direct transcriptional regulation [a first set of TH target genes (early expression)]. Some of these target genes serve as intermediate factors and regulate a second

series of TH target genes (late expression). This group of intermediate factors encompasses transcription factors (NRF-1, NRF-2, PPAR

c

) and transcriptional coactivators (PGC-



1

a

, PGC-1b). These can ultimately enter the mitochondrion and regulate a second series of T3 target genes [e.g. mitochondrial transcription factor A (mtTFA)]. For further



details, see text.

54

F. Cioffi et al. / Molecular and Cellular Endocrinology 379 (2013) 51–61



and Chan, 2007

). They are mainly involved in the fusion of outer

mitochondrial membranes (OMM) and the tethering of mito-

chondria to the endoplasmic reticulum (ER) (

de Brito and Scorr-

ano, 2009

).

– The dynamin-like GTPase protein OPA1 (optic atrophy type 1),



which is located in the intermembrane space (associated with

the inner mitochondrial membrane) and mediates the fusion

of the inner membranes (

Cipolat et al., 2004; Chen et al., 2005

).

For fission



:

– Recruitment of Drp1 (a GTPase belonging to the dynamin family)

from the cytosol to the OMM. This step is mediated by a mito-

chondrial integral outer membrane protein called Fis1 (fission

protein 1 homolog) (

Liesa et al., 2009

). Drp1 oligomerization

(regulated by post-translational modification) leads finally to

fission (for review, see

Chang and Blackstone, 2010

). During

the above mitochondrial processes, there is mitochondrial

exchange of such molecules as mtDNA, and proteins, and parts

of membranes (for review, see

Westermann, 2010

and


Otera

and Mihara, 2011

). Several external stimuli may affect mito-

chondrial plasticity, including thyroid hormones; however, to

our knowledge there are few or no data on this issue at present.

4. Thyroid hormones and mitochondria

Modulation of mitochondrial activity by TH may be effected in

one of two ways: direct or indirect.

4.1. Direct way

The direct mode requires the presence inside the organelles of

specific binding sites for the hormone. In contrast, the indirect

one does not need these sites to be present but instead may be

mediated by signaling pathways located in different parts of the

cell. Concerning the first possibility, the presence of binding sites

for T3 has been reported by several laboratories. High-affinity

binding sites for T3 in the mitochondrial inner membrane were

first reported in 1975 by

Sterling and Milch (1975)

. The existence

of mitochondrial binding sites for T3 were confirmed by others

in 1981 (

Goglia et al., 1981

), but despite this and despite several re-

ports of rapid effects of T3 on mitochondria, the physiological sig-

nificance of these sites and indeed their very existence, and the

physiological significance of the direct effects were controversial

at that time. Subsequently, however, the existence of specific mito-

chondrial binding sites for T3 received additional confirmation

from the work of

Morel et al. (1996)

and

Wrutniak et al. (1995)



.

Morel et al. studied the kinetics of the internalization and specific

subcellular binding of T3 in mouse liver, both in vivo and in vitro.

They showed, by quantitative electron microscopic autoradiogra-

phy, that after the injection of radiolabeled T3, specific binding

was evident in five cell-compartments (including mitochondria).

Surprisingly, specific binding was not evident in the cytosol, which

contains T3-binding proteins. Wrutniak et al., using a photoaffinity

labeling technique, identified two T3-binding proteins in rat liver

mitochondrial extracts. One (molecular weight 43 kDa) was lo-

cated in the matrix and the other (MW 28 kDa) in the inner mem-

brane. These results are in partial agreement with those obtained

by

Sterling and Milch (1975)



and by us (

Goglia et al., 1981

). The

same group (



Wrutniak et al., 1995

), using antibodies against the

two binding domains of c-erbA K1, identified two proteins [mito-

chondrial matrix T3-binding protein (p43) and inner mitochondrial

membrane T3-binding protein (p28)] whose location and molecu-

lar weight were identical to the mitochondrial T3-binding proteins

previously described.

Bigler et al. (1992)

had previously demon-

strated that truncated c-erbAK1 proteins are synthesized from

the c-erbA mRNA encoding the full-length TR (47 kDa) by means

of an internal AUG codon. Using an expression vector provided

by these authors,

Wrutniak et al. (1995)

overexpressed a truncated

43 kDa c-erbAK1 protein in CV1 cells, and then by cyto-immuno-

fluorescence experiments demonstrated that this truncated TRK

protein is specifically imported into mitochondria. Interestingly,

the same authors have identified five sequences highly related to

TRE within the rat mitochondrial genome, and they further showed

that p43 binds to one of these sequences in the D-loop region,

which contains the promoters of the mitochondrial genome. Very

recently, the same group (

Carazo et al., 2012

) described an atypical

mechanism for the import of p43 into the mitochondrion and

identified the protein sequences involved in its import. Indeed,

two alpha helices in the C-terminal part of p43 are actually mito-

chondrial import sequences since fusion to a cytosolic protein

induces its mitochondrial translocation. Helix 5 drives the atypical

mitochondrial import process, whereas helices 10/11 induce a

classical import process. The authors further showed that despite

its inability to drive any mitochondrial import, the N-terminal re-

gion of p43 also plays a permissive role since in the presence of the

C-terminal import sequences, different N-terminal regions deter-

mine whether the protein is imported or not imported. These re-

sults clearly demonstrate that p43 has the ability to function as a

T3-dependent mitochondrial transcription factor. The p43 mito-

chondrial T3 receptor may perform an important role in skeletal

muscle since its depletion adversely affects skeletal muscle devel-

opment and activity (

Pessemesse et al., 2012

).

All these data raise the possibility that mitochondrial binding



sites for T3 may play very important physiological roles in regulat-

ing the mitochondrial transcription apparatus, thus leading to a

regulation of mitochondrial biogenesis by acting in synchrony with

the nuclear genome. This is an attractive possibility for two rea-

sons: (a) T3 influences mitochondrial biogenesis and turnover and

(b) the mitochondrial biogenesis or turnover needs the coordinated

participation of the nuclear and mitochondrial genetic apparatuses.

Actually, early results obtained by us and by others – showing that

T3 regulates the mitochondrial population and the mitochondrial

nucleic acid level (

Gadaleta et al., 1972; Mutvei et al., 1989; Leo

et al., 1976; Goglia et al., 1983

) – had already suggested just such

a possibility. Apparently confirmatory results were obtained by

Martino et al. (1986)

, who showed a direct action of T3 on mito-

chondrial RNA-polymerase in isolated mitochondria, and subse-

quently by

Enríquez et al. (1999)

. The latter authors studied the

effect of T3 (both in vivo and in vitro) on ‘‘in organello’’ mtDNA tran-

scription and on the ‘‘in organello’’ footprinting patterns in the

mtDNA regions involved in the regulation of transcription. Their re-

sults confirmed a direct influence of T3 on the mitochondrial tran-

scription apparatus, and in particular they showed that T3

selectively modulates the alternative H-strand transcription initia-

tion sites without a previous activation of nuclear genes.

4.2. Indirect ways

On the basis of the data discussed above, it seems reasonable to

conclude that TH have at least three different, but probably

interconnected, mode of action, by which they regulate the expres-

sions of target genes contributing to mitochondrial biogenesis. The

first relies on a binding of TH to nuclear TR, and for TH to affect nu-

clear gene expression by binding to a TRE. The second involves TH

affecting mitochondrial transcription directly by binding to a

mitochondrial TR. In the third, intermediate factors such as the tran-

scription factors NRF-1, NRF-2, and PPAR

c

, and the coactivators



PGC-1alpha and PGC-1beta may be synthesized, and by entering

the nucleus, regulate other series of TH-target genes. These mecha-

nisms may be additionally affected by many nongenomic actions

F. Cioffi et al. / Molecular and Cellular Endocrinology 379 (2013) 51–61

55


such as post-translational modifications, by the local bioavailability

or by the direct binding of TH to some cellular targets (see

Fig. 2

).

The above-mentioned coactivators include the PGC-1 family.



The first member of this family to be identified was PGC-1alpha

(peroxisome proliferator-activated receptor gamma coactivator

1alpha). PGC-1alpha is rapidly and strongly induced by TH. Indeed,

PGC-1


a

expression levels and protein levels were increased,

respectively, 13-fold (

Weitzel and Iwen 2011

) and 3-fold (

Irrcher


et al., 2003; Weitzel et al., 2003; Venditti et al., 2009

) 6 h after

administration of T3 and this action is mediated by a TRE in the

promoter (

Wulf et al., 2008

). Besides, recently, Thakran et al. have

shown that PGC-1

a

partecipates in the T3 induction of CPT1



a

and


PDK4 in the liver and, for regulation of hepatic gene expression,

PGC-1


a

was deacetylated probably through the activation of the

nuclear deacetylase SIRT1 (

Thakran et al., 2013

). It has been shown

that PGC-1alpha has profound influences on adaptive thermogen-

esis in brown adipose tissue, on hepatic gluconeogenesis, and on

mitochondrial biogenesis. In addition, PGC-1alpha coactivates var-

ious nuclear receptors and nuclear respiratory factors, including

the thyroid hormone receptor (

Puigserver et al., 1998; Sadana

et al., 2007; Attia et al., 2010

). However, PGC-1alpha knock-out

mice and knock-down in cell culture have revealed, respectively:

few alterations in mitochondrial biogenesis (

Ventura-Clapier

et al., 2008; Hock and Kralli, 2009

) and few defects in TH-mediated

gene-expression patterns (

Wulf et al., 2007

). It is possible that

other coactivators of the PGC-1 family may play roles. Recently,

the presence of PGC-1alpha has been demonstrated in mitochon-

dria. This opens interesting perspectives on the possible roles of

these coactivators, but further studies will be needed to undiscover

their functions (

Aquilano et al., 2010

). PGC-1beta, another member

of the PGC-1 family, seems to be closely related to PGC-1alpha but

there are some differences. PGC-1b, on the other hand, activates

mithochondrial biogenesis by binding to different transcription

factors (including TR) and its expression has been shown to be rap-

idly and strongly induced by TH (

Weitzel et al., 2003

) suggesting a

direct regulation via a TRE. So PGC-1

a

and PGC-1b are endoge-



nously and rapidly regulated by TH in vivo via a TRE. Other activa-

tors regulated by TH include coactivator SRC-1, which plays a role

in thermogenesis (

Picard et al., 2002

). SRC-1 knock-out mice dis-

play features of thyroid resistance (

Weiss et al., 1999

) highlighting

a close connection between SRC-1 and TH. These important aspects

have been recently reviewed in an excellent and comprehensive

manner by

Weitzel and Iwen (2011)

. Recently, other studies have

highlight the clinical relevance of TH. Indeed, recent observation

and animal models have shaped our understanding of signaling

pathways of thyroid hormone and how this insight might be trans-

lated into therapeutic strategies, especially for treating hyperlipid-

emia and obesity but also to treat cardiac disease, cancer and

improve cognitive function (

Brent, 2012

). Infact, TR-b mutations

have been identified in a broad range of cancer including hepato-

cellular carcinoma, renal cell carcinoma, erythroleukemias and

thyroid cancer (

Rosen et al., 2011; Chan and Privalsky, 2010

). In


addition, thyroid hormone acting through TR-

a

regulates adult



hyppocampal neurogenesis which is important in learning, mem-

ory and moon (

Desouza et al., 2005; Kapoor et al., 2010

).

5. Thyroid hormones and mitochondrial energetics



It is universally recognized that TH are unique in their ability to

stimulate thermogenesis/calorigenesis (the well-known calori-

genic effect of TH). Their main action consists in a stimulation of

cellular respiration while at the same time reducing metabolic effi-

ciency. However, despite this phenomenon being known since the

end of the 19th century (

Magnus-Levy, 1895

) and being the subject

of a large number of papers, the mechanism by which TH exert

their effects on energy metabolism is far from firmly established.

5.1. Uncoupling mechanism

One of the most intriguing hypothesis is the uncoupling

hypothesis. This proposes that TH stimulates metabolic rate by act-

ing at the mitochondrial level to uncouple the electron transport

chain from ATP synthesis. This hypothesis predicts a thyroid-

dependent stimulation of energy expenditure without a concomi-

tant increase in ATP production (decreased P/O ratio). The early

experiments supporting such a possibility were those performed

by

Lardy and Feldott (1951)



and by

Hess and Martius (1951)

,

who showed that mitochondria prepared from T4-treated rats



exhibited lower P/O ratios than those from untreated euthyroid

controls. However, in the early 1960s its validity was questioned,

principally because uncoupling was observed only with pharmaco-

logical doses of TH. Since some effects were observable in vitro (in

isolated mitochondria), the theory implied that TH acted directly at

the mitochondrial level. In addition, the results of such in vitro

studies were not always reproducible, and they were widely

thought to reflect chemical artifacts. But, this hypothesis has never

been dropped, and it continues to this day to be investigated using

new approaches. Indeed, it received renewed attention when the

discovery was made that uncoupling proteins are present not only

in brown adipose tissue (where UCP1, by the mechanism of uncou-

pling, is able to dissipate energy, so producing heat), but in almost

all tissues and cells, and that their expressions are increased by T3

(

Lanni et al., 1997; Lanni et al., 1999; de Lange et al., 2001



; for re-

view, see also

Lanni et al., 2003

and


Cioffi et al., 2009

). These find-

ings stimulated attempts to show a possible involvement of these

proteins in the calorigenic effect of T3. In particular, UCP2 (ubiqui-

tously expressed) and UCP3 (predominantly expressed in skeletal

muscle) have attracted great interest. The realization that UCP3

is present in skeletal muscle, a tissue that is metabolically very

active, led to this protein being viewed as a possible candidate

for the mediator of the effects of thyroid hormones on resting met-

abolic rate. This hypothesis has been investigated and the authors

concluded that UCP3 does indeed have the potential to be a molec-

ular determinant of the effects of T3 on resting metabolic rate (

de

Lange et al., 2001



). In that study, they showed that when a single

injection of T3 was given to hypothyroid rats, a maximal stimula-

tion of UCP3 expression was evident at 48 h after the injection. At

this time-point, the resting metabolic rate also reached its maximal

value and at the mitochondrial level there was a corresponding in-

crease in the proton leak. These results received support from the

study by

Flandin et al. (2009)

. In that study, to test the possibility

that T3 might act via UCP3, a UCP3-knockout (KO) model was used.

This model was found to exhibit a normal phenotype except that

upon T3 administration, the stimulation of oxygen consumption

was significantly weaker (by 6%) in the UCP3 KO mice than in the

wild-type (WT) mice. These results reinforce the idea that UCP3

might play a role in the modulation of energy balance by TH. How-

ever, the real uncoupling capacity of UCP3 is under debate, and a

question has been raised as to whether the uncoupling effect of

UCP3 is a primary function or a secondary one (

Goglia and Skula-

chev, 2003

; and for review, see

Azzu et al., 2010

).

5.2. Other mechanisms



Other mechanisms have been proposed to contribute to the

uncoupling effect of T3. For instance, a recent study showed that

the mitochondrial uncoupling induced by T3 is transduced (in rats

in vivo and in cultured Jurkat cells) by a gating of the mitochondrial

permeability transition pore (PTP). This T3-induced PTP gating was

abrogated in inositol 1,4,5-trisphosphate [IP(3)] receptor1

56

F. Cioffi et al. / Molecular and Cellular Endocrinology 379 (2013) 51–61



[IP(3)R1](À/À) cells, indicating that the endoplasmic reticulum

IP(3)R1 may serve as the upstream target for the mitochondrial

activities of T3 (

Yehuda-Shnaidman et al., 2010

). Other mechanisms

that may play a role in the calorigenic effects of TH include: (i) the

maintenance of transmembrane ion gradients through the action of

Na

+



/K

+

-ATPase, Ca



2+

-ATPase, and Ca

2+

cycling in muscle and other



tissues, as reviewed in a number of articles (

Silva, 2006; Lanni

et al., 2001; Silvestri et al., 2005

) and (ii) regulation of the expres-

sions of a selected set of nuclear genes encoding mitochondrial in-

ner membrane proteins (

Nelson et al., 1995

). However, it seems

unlikely to us that a rapid regulation of mitochondrial respiration

could be achieved by synthesizing respiratory components for

insertion into pre-existing membranes. It seems more likely that

in the regulation of cellular respiration by TH, a double mechanism

operates. One would be a short-term mechanism, useful for a rapid

response to sudden physiological changes in energy requirements.

The other would be a long-term mechanism, useful for responding

to prolonged stimuli (days or weeks) such as a long period of cold

exposure or a change in diet or developmental stage. Such a long-

term mechanism would ultimately produce a new mitochondrial

population that is more or less active (depending on the increased

presence of respiratory components) and/or more or less efficient

(depending on the increased presence of some specific components,

such as UCPs). The action of TH on calcium homeostasis may also

play a role in the modulation of mitochondrial energy transduction.

6. Thyroid hormone derivatives and analogues

6.1. Derivatives

Until a few years ago, it was a common assumption in the liter-

ature that T4 was a precursor, and that T3 was the only active iod-

othyronine. However, accumulating evidence suggest that other

iodothyronines – such as T4 itself, as well as some metabolites such

as reverse T3 (rT3), 3-iodothyronamine (T1AM), and 3,5-T2 (T2) –

may be of biological relevance. This issue requires too much space

for us to discuss it here in any detail, and since several published re-

views have already provided extensive analyses of the available

data on these molecules, we will only give a few examples.

First, concerning T4 and rT3:

Farwell et al. (2006)

compared the

abilities of iodothyronines to initiate actin polymerization in astro-

cytes, and found that T4 and rT3 are each more potent than T3. In

addition, they found that acute hormone replacement with either

T4 or rT3 completely restored microfilament organization, while

acute T3 replacement failed to correct this defect (

Farwell et al.,

2006


).

Second, concerning T1AM: thyronamines (TAMs) are a recently

identified class of endogenous signaling compounds. With the

exception that TAMs do not possess a carboxylate group, their

structure is identical to that of thyroid hormone and to those of

deiodinated thyroid hormone derivatives. The iodothyronamines,

which are probably generated by the combined action of deiodin-

ases and aromatic amino acid decarboxylase, activate a biogenic

amine-like G-protein-coupled receptor (GPCR): namely, trace

amine receptor 1 (TAR1). T1AM, which is present both in the blood

and in peripheral tissues, seems to have actions opposite to the

classic actions of TH; indeed, when injected into mice, T1AM

induces rapid falls in body temperature and heart rate. Quite re-

cently, it has been shown that T(1)AM has significant physiological

effects in mammals, such as reversible, dose-dependent negative

inotropic and chronotropic effects on the heart and a cardioprotec-

tive effect in perfused rat hearts subjected to ischemia and reper-

fusion (


Frascarelli et al., 2011

). A more exhaustive description of

the actions and mechanisms of action of T1AM can be found in a

recent review by

Piehl et al. (2011)

.

Third, concerning 3,5-diiodothyronine: until quite recently, this



naturally occurring molecule was considered to be an inactive iod-

othyronine, but the discovery of metabolic effects of T2 attracted

the attention of several group of investigators. Early studies

showed that T2 was able to stimulate mitochondrial activities

(

Lanni et al., 1992, 1993, 1994; O’Reilly and Murphy, 1992



); the ef-

fects of T2 seem to be mediated by a direct interaction with mito-

chondria. Specific binding sites for T2 (

Goglia et al., 1994

b) have

been described in rat liver mitochondria, but the data concerning



mitochondrial sites need to be interpreted with some caution be-

cause of the limitations inherent in such studies. Indeed, due to

the inner-ring labeling procedure the 3,5-

125


I-T2 used for the mea-

surement of binding parameters had a low specific activity and it

was possible to perform studies only over a narrow range of con-

centrations. However, subsequent studies (

Lanni et al., 1994; Ar-

nold et al., 1998; Goglia et al., 1994a

) showed that addition of T2

to the COX complex isolated from bovine heart stimulated its

activity, and suggested that subunit Va of the COX complex might

be the binding site for T2 (for review, see

Goglia, 2005

). Effects of

T2 have also been observed at the level of the plasma membrane

(

Huang et al., 1999; Incerpi et al., 2002



). Interestingly, we recently

succeeded in showing that in rats that had been fed a high-fat diet,

administration of T2 stimulated metabolic rate, reduced the serum

cholesterol and triglyceride levels, and improved both glucose tol-

erance and insulin resistance, effects which involve the well known

Sirtuin 1/AMP-activated protein kinase/PGC-1

a

pathway (



Lanni

et al., 2005; de Lange et al., 2011; Moreno et al., 2011

,). Similar ef-

fects have been observed in humans (

Antonelli et al., 2011

). How-


ever, whether or not the function of T2 is physiological remains to

be elucidated.

6.2. Analogues

The metabolic effects of thyroid hormones have long been the

focus of research because of the potential use of these hormones

as drugs to stimulate body-weight loss and lipid metabolism and

to treat some disease such as obesity and diabetes (see

Aguer


and Harper, 2012

). However, the simultaneous induction of delete-

rious side effects – such as a thyrotoxic state (tachycardia, muscle

wasting, bone loss), and especially those at the cardiac level –

effectively stopped TH being used for these purposes. Recently,

however, it has been shown that newly discovered analogues and

derivatives may have similar desirable effects without the delete-

rious side effects. Indeed, since the middle of the last century much

effort has been devoted to the development of analogues of thyroid

hormones that might improve serum lipid profiles (i.e., plasma

cholesterol, lipoprotein, etc.) without having undesirable cardiac

effects. In the past few years, the attention of scientists has been

focused on the study of agents that are both tissue- and TRb-selec-

tive (TRb-receptors are barely expressed in cardiomyocytes), with

the principal aim of addressing such major medical problems as

obesity, ectopic fat accumulation, and atherosclerosis. Representa-

tive analogues endowed with these characteristics are GC-1 (sobet-

irome) and KB2115 (or eprotirome). They have the potential to

reduce serum LDL cholesterol, lipoprotein (a), and triglyceride lev-

els without harmful effects on heart or muscle in humans (for re-

view, see

Moreno et al., 2008; Baxter and Webb, 2009

; and

Cioffi


et al., 2010; Berkenstam et al., 2008

). At cellular level, GC-1 is able

to stimulate mitochondrial oxidative processes (

Venditti et al.,

2010

). KB2115 also works additively with another cholesterol-low-



ering therapy, statins, to produce greater reductions in serum cho-

lesterol (

Ladenson et al., 2010

). However, very recently it has been

shown that thyroid hormone receptor b agonists prevent hepatic

steatosis in fat-fed rats but impair insulin sensitivity (

Vatner

et al., 2013



. This suggest that the development of future TRb

agonists must consider the potential adverse effects on insulin

F. Cioffi et al. / Molecular and Cellular Endocrinology 379 (2013) 51–61

57


sensitivity. (The structure of TH and its analogues/derivates are

shown in


Table 2

).

7. Conclusions



The demands of mitochondria and their complex integration

into cell biology extend far beyond the provision of ATP. This has

prompted a radical change in our perception of mitochondria,

and has made these organelles a major target of investigations into

many aspects of cell biology and medicine. The identification of

novel mechanisms governing mitochondrial biogenesis and

replication, and of the delicately poised signaling pathways coordi-

nating the mitochondrial and nuclear genomes, constitute funda-

mental steps in in-depth investigations of the role of TH in the

modulation of metabolism and of the real involvement of mito-

chondria in these actions. TH affect many aspects of mitochondria

activity (bioenergetics, transcription, calcium homeostasis, etc.),

and thanks to the considerable efforts made by several groups of

investigators around the globe, our knowledge of the influence of

iodothyronines has grown and grown.

7.1. Perspectives

In the future, progress in research into TH and mitochondria

may come from investigations using methods such as proteomics.

Indeed, mitochondrial proteomics can be a powerful tool in the

study of the actions of TH since its coverage can extend to mito-

chondrial proteins from all mitochondrial metabolic pathways,

including the respiratory chain. Indeed,

Silvestri et al. (2010)

by

combining 2D-E, mass spectrometry, and blue native (BN) PAGE re-



cently identified T2-induced mitochondrial proteins that may be

responsible for the beneficial effects of T2 on liver adiposity and

metabolism. In addition, in the future it should be possible to make

progress into the possible use of TH analogues/derivatives to

Table 2

Structure of TH derivates/analogues.



Thyroid hormones


Download 2.44 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   ...   23




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling