Mitochondrial endocrinology Mitochondria as key to hormones and metabolism


Download 2.44 Mb.
Pdf ko'rish
bet11/23
Sana01.10.2017
Hajmi2.44 Mb.
#16915
1   ...   7   8   9   10   11   12   13   14   ...   23

.

Petersen, K.F., Dufour, S., Befroy, D., Garcia, R., Shulman, G.I., 2004. Impaired



mitochondrial activity in the insulin-resistant offspring of patients with type 2

diabetes. N. Engl. J. Med. 350, 664–671

.

Phielix, E., Meex, R., Moonen-Kornips, E., Hesselink, M.K., Schrauwen, P., 2010.



Exercise training increases mitochondrial content and ex vivo mitochondrial

function similarly in patients with type 2 diabetes and in control individuals.

Diabetologia 53, 1714–1721

.

Picard, M., Ritchie, D., Wright, K.J., Romestaing, C., Thomas, M.M., Rowan, S.L.,



Taivassalo, T., Hepple, R.T., 2010. Mitochondrial functional impairment with

aging is exaggerated in isolated mitochondria compared to permeabilized

myofibers. Aging Cell 9, 1032–1046

.

Picard, M., Taivassalo, T., Ritchie, D., Wright, K.J., Thomas, M.M., Romestaing, C.,



Hepple, R.T., 2011. Mitochondrial structure and function are disrupted by

standard isolation methods. PLoS ONE 6, e18317

.

Pruchnic, R., Katsiaras, A., He, J., Kelley, D.E., Winters, C., Goodpaster, B.H., 2004.



Exercise training increases intramyocellular lipid and oxidative capacity in

older adults. Am. J. Physiol. Endocrinol. Metab. 287, E857–E862

.

Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., 1963. The glucose fatty acid



cycle: its role in insulin sensitivity and the metabolic didturbances of diabetes

mellitus. Lancet 1, 785–789

.

Reznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.X., Dong, J.,



Mustard, K.J., Hawley, S.A., Befroy, D., Pypaert, M., Hardie, D.G., Young, L.H.,

Shulman, G.I., 2007. Aging-associated reductions in AMP-activated protein

kinase activity and mitochondrial biogenesis. Cell Metab. 5, 151–156

.

Rimbert, V., Boirie, Y., Bedu, M., Hocquette, J.-F., Ritz, P., Morio, B., 2004. Muscle fat



oxidative capacity is not impaired by age but by physical inactivity: association

with insulin sensitivity. FASEB J. 18, 737–739

.

Romanello, V., Guadagnin, E., Gomes, L., Roder, I., Sandri, C., Petersen, Y., Milan, G.,



Masiero, E., Del Piccolo, P., Foretz, M., Scorrano, L., Rudolf, R., Sandri, M., 2010.

Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J.

29, 1774–1785

.

Short, K.R., Vittone, J.L., Bigelow, M.L., Proctor, D.N., Rizza, R.A., Coenen-Schimke,



J.M., Nair, K.S., 2003. Impact of aerobic exercise training on age-related changes

in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888–1896

.

Simoneau, J.A., Veerkamp, J.H., Turcotte, L.P., Kelley, D.E., 1999. Markers of capacity



to utilize fatty acids in human skeletal muscle: relation to insulin resistance and

obesity and effects of weight loss. FASEB J. 13, 2051–2060

.

Stump, C.S., Short, K.R., Bigelow, M.L., Schimke, J.M., Nair, K.S., 2003. Effect of insulin



on human skeletal muscle mitochondrial ATP production, protein synthesis,

and mRNA transcripts. Proc. Natl. Acad. Sci. USA 100, 7996–8001

.

Toledo, F.G., Watkins, S., Kelley, D.E., 2006. Changes induced by physical activity and



weight loss in the morphology of intermyofibrillar mitochondria in obese men

and women. J. Clin. Endocrinol. Metab. 91, 3224–3227

.

Toledo, F.G., Menshikova, E.V., Ritov, V.B., Azuma, K., Radikova, Z., DeLany, J., Kelley,



D.E., 2007. Effects of physical activity and weight loss on skeletal muscle

mitochondria and relationship with glucose control in type 2 diabetes. Diabetes

56, 2142–2147

.

Toledo, F.G., Menshikova, E.V., Azuma, K., Radikova, Z., Kelley, C.A., Ritov, V.B.,



Kelley, D.E., 2008. Mitochondrial capacity in skeletal muscle is not stimulated

by weight loss despite increases in insulin action and decreases in

intramyocellular lipid content. Diabetes 57, 987–994

.

Toledo, F.G.S., Menshikova, E.V., Azuma, K., Radikova, Z., Kelley, C.A., Ritov, V.B.,



Kelley, D.E., 2008. Mitochondrial capacity in skeletal muscle is not stimulated

by weight loss despite increases in insulin action and decreases in

intramyocellular lipid content. Diabetes 57, 987–994

.

Tonkonogi, M., Harris, B., Sahlin, K., 1997. Increased activity of citrate synthase in



human skeletal muscle after a single bout of prolonged exercise. Acta Physiol.

Scand. 161, 435–436

.

Waters, D.L., Brooks, W.M., Qualls, C.R., Baumgartner, R.N., 2003. Skeletal muscle



mitochondrial function and lean body mass in healthy exercising elderly. Mech.

Ageing Dev. 124, 301–309

.

Wenz, T., Rossi, S.G., Rotundo, R.L., Spiegelman, B.M., Moraes, C.T., 2009.



Increased muscle PGC-1alpha expression protects from sarcopenia and

metabolic disease during aging. Proc. Natl. Acad. Sci. USA 106, 20405–20410

.

34

F.G.S. Toledo, B.H. Goodpaster / Molecular and Cellular Endocrinology 379 (2013) 30–34



Review

Hepatic energy metabolism in human diabetes mellitus, obesity

and non-alcoholic fatty liver disease

Chrysi Koliaki

a

, Michael Roden



a

,

b



,

a



Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany

b

Division of Endocrinology and Diabetology and Metabolic Diseases, University Clinics Düsseldorf, Düsseldorf, Germany



a r t i c l e i n f o

Article history:

Available online 12 June 2013

Keywords:

Mitochondrion

Steatosis

Non-alcoholic steatohepatitis (NASH)

Lipotoxicity

a b s t r a c t

Alterations of hepatic mitochondrial function have been observed in states of insulin resistance and non-

alcoholic fatty liver disease (NAFLD). Patients with overt type 2 diabetes mellitus (T2DM) can exhibit

reduction in hepatic adenosine triphosphate (ATP) synthesis and impaired repletion of their hepatic

ATP stores upon ATP depletion by fructose. Obesity and NAFLD may also associate with impaired ATP

recovery after ATP-depleting challenges and augmented oxidative stress in the liver. On the other hand,

patients with obesity or NAFLD can present with upregulated hepatic anaplerotic and oxidative fluxes,

including b-oxidation and tricarboxylic cycle activity. The present review focuses on the methods and

data on hepatic energy metabolism in various states of human insulin resistance. We propose that the

liver can adapt to increased lipid exposition by greater lipid storing and oxidative capacity, resulting in

increased oxidative stress, which in turn could deteriorate hepatic mitochondrial function in chronic

insulin resistance and NAFLD.

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

Contents


1.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.

Literature search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



3.

Assessment of hepatic energy metabolism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.

In vitro methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



3.2.

In vivo methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.

Ex vivo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



4.

The physiological role of liver energy metabolism and mitochondrial function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.

Liver mitochondrial function in healthy humans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



6.

Liver mitochondrial function in T2DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.

Liver mitochondrial function in obesity and steatosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



8.

Liver mitochondrial function in advanced NAFLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.

Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) comprises a broad

spectrum of chronic liver diseases, ranging from uncomplicated

hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis,

and finally liver cirrhosis and hepatocellular carcinoma (

Angulo,


2002; Smith and Adams, 2011

). Hepatic steatosis is defined as

intrahepatic fat content above 5.5% (

Browning et al., 2004; Roden,

2006

) and represents a clinical finding typically coexisting with



obesity, while NASH and other forms of advanced NAFLD are char-

acterized by histological signs of inflammation and fibrosis (

Roden,

2006; Smith and Adams, 2011



). As liver biopsies are not routinely

performed, only rough estimates of the prevalence of NAFLD are

0303-7207/$ - see front matter

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.mce.2013.06.002

Corresponding author. Address: Institute for Clinical Diabetology, German



Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University,

Auf’m Hennekamp 65, 40225 Düsseldorf, Germany. Tel.: +49 211 3382 201.

E-mail addresses:

Chryssi.Koliaki@ddz.uni-duesseldorf.de

(C. Koliaki),

Michael.-

Roden@ddz.uni-duesseldorf.de

(M. Roden).

Molecular and Cellular Endocrinology 379 (2013) 35–42

Contents lists available at

SciVerse ScienceDirect

Molecular and Cellular Endocrinology

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m c e


available, which range from 3% to 30%, with NASH being present in

approximately one third of all cases (

Clark, 2006; Smith and

Adams, 2011

). Even higher estimates are suggested for insulin

resistant cohorts such as patients with type 2 diabetes mellitus

(T2DM) or severe obesity, suggesting that these entities and NAFLD

share common pathogenic mechanisms (

Roden, 2006

). NAFLD re-

sults from the dynamic interplay of increased lipid influx into the

liver, increased de novo hepatic lipogenesis and defective lipid uti-

lization, which will stimulate hepatic lipid accumulation. Chronic

dietary overload with fructose and saturated fatty acids, will also

enhance accumulation of lipid metabolites along with oxidative

and endoplasmic reticulum stress and release of cytokines, and

thereby foster NAFLD progression (

Krebs and Roden, 2004; Roden,

2006; Smith and Adams, 2011

).

Insulin resistance is tightly associated with ectopic fat accumu-



lation in peripheral tissues, including skeletal muscle and liver as

the most important sites (

Roden, 2005; Szendroedi and Roden,

2009


). For skeletal muscle, increased intramyocellular fat content,

specifically increased lipid availability, promotes insulin resistance

through several mechanisms including diacylglycerol (DAG) acti-

vation of novel protein kinase C (PKC) isoforms, leading to im-

paired insulin-stimulated glucose transport and muscle glycogen

synthesis (

Roden, 2004

). Insulin resistant humans such as patients

with T2DM and first-degree relatives of T2DM patients, may fur-

ther show impaired mitochondrial function in muscle, character-

ized by lower flux through adenosine triphosphate (ATP)

synthase under basal and insulin-stimulated conditions (

Petersen

et al., 2005; Szendroedi et al., 2007

). These abnormalities have

been mainly attributed to decreased mitochondrial content rather

than to an inherent impairment of mitochondrial functionality

(

Boushel et al., 2007; Morino et al., 2005



). Whether impaired mito-

chondrial function is causally associated with insulin resistance

and how intramyocellular lipids modulate mitochondrial substrate

oxidation remains a matter of debate, because recent data support

a dissociation of muscle mitochondrial function from insulin sensi-

tivity (


Asmann et al., 2006; Boushel et al., 2007; De Feyter et al.,

2008; Holloszy, 2009

).

Elevated hepatocellular lipid content can promote hepatic insu-



lin resistance in the setting of NAFLD, through mechanisms similar

to those involved in lipid-induced muscle insulin resistance, such

as hepatic accumulation of DAG and DAG-induced activation of

PKC


e

(

Jornayvaz and Shulman, 2012; Kumashiro et al., 2011; Sam-



uel et al., 2004

). Although alterations in mitochondrial function

could contribute to hepatic insulin resistance and NAFLD, the exact

nature of this relationship remains a hot topic of metabolic re-

search. Recent data from both humans and animal models showed

either decreased, unchanged or even increased hepatic mitochon-

drial function and oxidative phosphorylation capacity in insulin

resistant states such as T2DM, obesity and NAFLD (

Lockman and

Nyirenda, 2010; Vial et al., 2010

). It cannot be precluded that tis-

sue-specific differences exist in the association between mitochon-

drial function and insulin resistance or intracellular lipid content,

but this requires confirmation by adequately controlled human

studies, examining both liver and muscle mitochondrial function

in these metabolic states.

The present review aims to provide a concise update of the

available data on hepatic energy metabolism in several phenotypes

of insulin resistance (T2DM, obesity, NAFLD), and analyzes patho-

genetic concepts possibly underlying alterations of energy homeo-

stasis in human liver.

2. Literature search

The PubMed electronic database was searched repeatedly over

three months for all types of articles published in English language

until January 2013, using the following search terms: ‘‘hepatic en-

ergy metabolism and insulin resistance’’, ‘‘hepatic energy metabo-

lism and NAFLD’’, ‘‘hepatic energy metabolism and T2DM’’,

‘‘hepatic energy metabolism and obesity’’, ‘‘hepatic energy metab-

olism and liver steatosis’’, ‘‘hepatic mitochondrial function and

insulin resistance’’, ‘‘hepatic mitochondrial function and NAFLD’’.

Full-text articles and reference lists of selected review papers were

critically reviewed. Our literature search strategy was restricted to

studies in humans, but a limited number of mechanistic studies

using animal models of insulin resistance and NAFLD were also re-

viewed and are briefly discussed herein.

3. Assessment of hepatic energy metabolism

Liver mitochondrial function can be evaluated directly or indi-

rectly by in vitro, in vivo and ex vivo techniques.

3.1. In vitro methods

The in vitro methods include measurements of mitochondrial

mass and functionality in biopsy-derived liver samples. They com-

prise mitochondrial membrane potential and proton leak kinetics,

assessment of mitochondrial content by ultrastructural observa-

tions, citrate synthase activity and ratio of mitochondrial relative

to nuclear DNA, polarographic determination of oxygen consump-

tion rates, enzyme activities of mitochondrial respiratory com-

plexes I–V, markers of oxidative stress such as mitochondrial

production of superoxide anion and lipid peroxidation products,

and anti-oxidant capacity such as superoxide dismutase specific

activity and reduced to oxidized glutathione ratio (

Bouderba

et al., 2012; García-Ruiz et al., 1995; Pérez-Carreras et al., 2003;

Raffaella et al., 2008; Vendemiale et al., 2001; Vial et al., 2011

).

3.2. In vivo methods



Most studies assessed hepatic energy metabolism in vivo by

using non-invasive, phosphorous magnetic resonance spectros-

copy (

31

P MRS) techniques to quantify ATP concentrations or syn-



thesis in human liver (

Bourdel-Marchasson et al., 1996; Chmelík

et al., 2008; Cortez-Pinto et al., 1999; Nair et al., 2003; Schmid

et al., 2008; Sharma et al., 2009; Szendroedi et al., 2009

).

31

P-



MRS allows for quantification of hepatic phosphorous metabolites

such as gamma nucleotide triphosphate (

c

-NTP), alpha NTP (



a

-

NTP), beta NTP (b-NTP), inorganic phosphate (Pi), phosphomono-



esters and phosphodiesters.

Fig. 1


depicts a typical liver

31

P MRS



spectrum of one healthy subject with all the peaks corresponding

to hepatocellular phosphorous metabolites that are resolved with

this technique. This technique can now be also applied on clinical

scanners (

Laufs et al., 2013

). High resolution three dimensional

(3D) magnetic spectroscopy imaging is the most recent develop-

ment providing absolute concentrations of phosphorus com-

pounds, corrected for hepatocellular fat content, as well as their

regional distribution within the liver (

Chmelík et al., 2008

).

31



P

MRS can also allow for assessing hepatic ATP synthesis, yielding

a direct estimate of the unidirectional flux through ATP synthase

(

Schmid et al., 2008



). Intravenous fructose challenge with monitor-

ing of the degree of ATP depletion and the extent of ATP recovery

yields a measure of the flexibility of hepatic energy homeostasis

(

Abdelmalek et al., 2012



). Fructose induces transient decrease of

hepatic ATP as a result of its rapid phosphorylation by fructokinase

after entering hepatocytes. Since hepatic fructose metabolism also

causes a rapid intracellular uric acid elevation, serum uric acid con-

centrations have been proposed as a surrogate marker of hepatic

ATP repletion upon ATP-depleting challenges (

Abdelmalek et al.,

2012


). Another non-invasive molecular imaging tool is positron

emission tomography (PET) combined with intravenous adminis-

36

C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42



tration of lipid radiotracers such as 18-fluoro-6-thia-heptadeca-

noic acid and

11

C-palmitate, which enables the quantification of



hepatic fatty acid uptake, oxidation and esterification (

Iozzo


et al., 2010; Viljanen et al., 2009

). Additional in vivo methods in-

clude stable isotope tracer techniques, such as the oral administra-

tion of [U-

13

C]propionate and deuterated water (



2

H

2



O), and the

intravenous infusion of [3,4-

13

C

2



]glucose, [1,2-

13

C



2

]b-hydroxybu-

tyrate, [3,4-

13

C



2

]acetoacetate and [

13

C

4



]palmitate, which help pro-

file hepatic glucose and mitochondrial metabolism and assess

various systemic and hepatic pathways including lipolysis, gluco-

neogenesis, tricarboxylic acid cycle function (TCA), non-oxidative

pathways replenishing TCA cycle intermediates (anaplerosis) and

ketogenesis (

Sunny et al., 2011

). Stable isotopes, such as

13

C-octa-


noate,

13

C-methionine and



13

C-ketoisocaproate, have been also ap-

plied in non-invasive carbon-labeled breath tests, to assess hepatic

mitochondrial b-oxidation and the severity of NAFLD, by measur-

ing the cumulative percentage of isotope exhalation or the

13

CO



2

enrichment in exhaled air (

Banasch et al., 2011; Miele et al.,

2003; Portincasa et al., 2006

). Finally, plasma concentrations of

3-hydroxybutyrate have been used as a simple and less informa-

tive, but organ-specific biochemical surrogate marker of hepatic li-

pid oxidation (

Kotronen et al., 2009

).

3.3. Ex vivo methods



High resolution respirometry by oxygraphs has been frequently

applied to skeletal muscle, but could also be performed in liver tis-

sue and isolated mitochondria. This method will provide useful

information on coupled and uncoupled maximal respiratory capac-

ity of liver tissue or hepatic mitochondria after addition of various

mitochondrial substrates such as octanoyl-coenzyme A, malate,

pyruvate, glutamate, succinate. To our knowledge, there are no

published data with this technique in humans so far, but prelimin-

ary data in mice are promising and lay the ground for applying

high resolution respirometry to quantify human liver mitochon-

drial function in several disease states (

Benard et al., 2006; Kozlov

et al., 2006; Kuznetsov et al., 2002

).

4. The physiological role of liver energy metabolism and



mitochondrial function

The human liver plays a critical role in regulating glucose and

lipid metabolism and whole-body energy homeostasis. Liver main-

tains blood glucose within a narrow concentration range, by its

ability to store glucose as glycogen and produce glucose after

either glycogen breakdown (glycogenolysis) or de novo glucose

production from gluconeogenic precursors (gluconeogenesis) (

Ro-


den and Bernroider, 2003

). In healthy humans, hepatic glycogenol-

ysis and gluconeogenesis are stimulated in the fasted state and

immediately inhibited in the postprandial state as a result of rapid

insulin action (

Tappy, 1995

). On the contrary, patients with T2DM

exhibit reduced postprandial hepatic glycogen synthesis and in-

creased hepatic glucose output in both fasting and postprandial

conditions, mainly driven by enhanced hepatic gluconeogenesis

(

Krssak et al., 2004



). The rise in the portal glucagon:insulin ratio

and the increased hepatic free fatty acid oxidation are held mainly

responsible for enhanced gluconeogenesis in T2DM (

Roden and

Bernroider, 2003

).

Liver mitochondria represent the major orchestrator of hepato-



cellular energy metabolism, since they are the site of fatty acid oxi-

dation and ATP synthesis (

Pessayre et al., 2002

). Three different

sources contribute to the hepatic levels of free fatty acids: de novo

lipogenesis within hepatocytes from acetyl-CoA, uptake of circulat-

ing plasma free fatty acids released by adipose tissue with lipolysis

and hydrolysis of intestinal chylomicrons (

McGarry and Foster,

1980


). Hepatic free fatty acids can either enter mitochondria to un-

dergo b-oxidation or be esterified into triglycerides. Hepatic tri-

glycerides in turn either accumulate within hepatocytes as

cytoplasmic lipid droplets, or are secreted as very low density lipo-

protein (VLDL) particles into blood circulation (

Lavoie and Gauthi-

er, 2006; McGarry and Foster, 1980; Nguyen et al., 2008; Pessayre

et al., 2001

). The entry of long-chain free fatty acids into hepatic

mitochondria is regulated by carnitine palmitoyl-transferase type

I (CPT-I), which is located in the outer mitochondrial membrane

and sensitive to inhibition by malonyl-CoA, the first substrate of

hepatic de novo lipogenesis (

Pessayre et al., 2001

). Successive cy-

cles of b-oxidation split hepatic free fatty acids into subunits of

acetyl-CoA, which are either completely degraded to carbon diox-

ide in the TCA (or Krebs) cycle, or condensed to ketone bodies

(ketogenesis), which are then secreted by hepatic cells into circula-

tion (


Lavoie and Gauthier, 2006

). Fatty acid oxidation in hepatic

mitochondria is associated with the reduction of oxidized coen-

zymes, which are in turn re-oxidized by the mitochondrial respira-

tory chain (

Pessayre et al., 2002, 2001

). During their re-oxidation,

they transfer their electrons to the polypeptide complexes of the

mitochondrial respiratory chain. The electron transfer along the

respiratory chain is coupled with an export of protons from

Fig. 1. Liver

31

P MRS spectrum of a representative healthy person obtained with the 3-Tesla whole-body magnetic resonance spectrometer (Philips Achieva, Best, The



Netherlands) at the German Diabetes Center, Düsseldorf, Germany. The eleven peaks correspond to the phosphorous metabolites of liver cells. Upper right panel: transversal

image with a voxel of interest (VOI) placement, using a 14 cm linear polarized surface coil, positioned over the lateral aspect of liver. ppm: parts per million; NTP:

triphosphate nucleoside; NADPH: nicotinamide adenine dinucleotide phosphate; UDPG: uridine diphosphoglucose; PEP: phosphoenol-pyruvate; GPC: glycerol phospho-

choline; GPE: glycerol phosphoethanolamine; Pi: inorganic phosphate; PC: phosphocholine; PE: phosphoethanolamine Phosphomonoesters (PME) include PE and PC,

phosphodiesters (PDE) include GPE and GPC.

C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42

37


mitochondrial matrix to intermembrane space, creating a large

electrochemical gradient across the inner mitochondrial mem-

brane, which acts as an energy reservoir. When energy is needed,

protons can re-enter matrix through ATP synthase (complex V),

causing the conversion of adenosine diphosphate (ADP) into ATP.

The adenine dinucleotide translocator proteins can then export

mitochondrial ATP in exchange for cytosolic ADP, and the cytoplas-

mic ATP can be used to power all hepatocellular energy-requiring

metabolic processes (

Pessayre et al., 2002, 2001

).

5. Liver mitochondrial function in healthy humans



Despite the limited data on the normal range of mitochondrial

function in human liver, some information can be derived from

clinical studies, which have compared direct or indirect measures

of hepatic mitochondrial function between insulin resistant and

insulin sensitive humans.

Table 1


summarizes the key data of these

studies, while

Fig. 2

depicts in a graphical way the percentage dif-



ferences of liver mitochondrial function between healthy humans

and several insulin resistant phenotypes.

Employing

31

P MRS to assess liver ATP turnover revealed that



young healthy humans display hepatic concentrations of

c

-ATP



Table 1

Studies in humans on hepatic energy metabolism under conditions of type 2 diabetes mellitus (T2DM), insulin resistance and non-alcoholic fatty liver disease (NAFLD).

Reference

Cohort


Methods

Results


Szendroedi et al. (2009)

9 T2DM


in vivo

31

P-MRS



;

c

ATP and Pi contents



9 matched

a

controls



in T2DM

9 young lean controls

Schmid et al. (2011)

9 T2DM


in vivo

31

P MRS



;flux through ATP synthase

8 matched

a

controls


in T2DM

Abdelmalek et al. (2012)

25 obese T2DM

in vivo


31

P MRS


;ATP recovery

with high or low fructose

consumption

fructose challenge

in high fructose consumers

Nair et al. (2003)

7 overweight

in vivo


31

P MRS


;ATP content

7 obese


fructose challenge

in overweight and obese

5 lean controls

unchanged ATP recovery

Viljanen et al. (2009)

34 healthy obese

18-fluoro-6-thia-

;hepatic fatty acid uptake

heptadecanoic acid PET

imaging


after VLCD for 6 weeks

Iozzo et al. (2010)

8 obese

11

C-palmitate PET imaging



"hepatic fatty acid oxidation

7 lean controls

in obese

Kotronen et al. (2009)

29 NAFLD

plasma levels of

no differences in hepatic lipid oxidation

29 controls

3-OHB

Sharma et al. (2009)



20 obese + NAFLD

in vivo


31

P MRS


"PME/Pi and PME/

c

ATP ratios



20 non-obese + NAFLD

in obese + NAFLD

20 non-obese -NAFLD

Sunny et al. (2011)

8 high HCL

in vivo


stable isotope tracers

"TCA cycle, anaplerosis, lipolysis and gluconeogenesis

8 low HCL

in high HCL

Cortez-Pinto et al. (1999)

8 NASH


in vivo

31

P MRS



;ATP recovery

7 controls

fructose challenge

in NASH


Sanyal et al. (2001)

6-10 NASH

in vitro

hepatic


"ß-oxidation and ox. stress

6 steatosis

lipid peroxidation

in NASH and steatosis

6 controls

serum b-OHB

mitochondrial defects in NASH

Miele et al. (2003)

10 NASH

13

C-octanoate breath test



"hepatic mitochondrial

20 controls

ß-oxidation in NASH

Pérez-Carreras et al.

(2003)

43 NASH


in vitro

ETC


;activity of ETC CI-V correlation with insulin resistance and

inflammation

16 controls

enzyme activity

Serviddio et al. (2008b)

10 NASH


in vitro

proton leak,

"UCP-2, proton leak and oxidative stress

8 controls

UCP-2 expression,

ROS production,

ATP content

ATP: adenosine triphosphate; ß-OHB: ß-hydroxybutyrate; 3-OHB: 3-hydroxybutyrate; CI-V: complexes I–V; ETC: electron transport chain; HCL: hepatocellular lipids;

31

P

MRS: phosphorous magnetic resonance spectroscopy; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PET: positron emission tomography; Pi:



inorganic phosphate; PME: phosphomonoesters; ROS: reactive oxygen species; TCA: tricarboxylic acid cycle; T2DM: type 2 diabetes mellitus; UCP-2: uncoupling protein 2;

VLCD: very low calorie diet.

A

Matched for age and body mass index.



Fig. 2. Hypothetical changes in hepatic energy metabolism in states of obesity,

steatosis, non-alcoholic steatohepatitis (NASH) and type 2 diabetes mellitus

(T2DM). Different features of hepatic energy metabolism such as ATP, b-oxidation

and respiratory complex activities were obtained from studies including healthy

control groups. The respective percent changes are compared to the data of the

respective healthy control group, which were set as 100%. Data are derived from the

following references:

Cortez-Pinto et al. (1999); Iozzo et al. (2010); Miele et al.

(2003); Pérez-Carreras et al. (2003); Schmid et al. (2011); Sunny et al. (2011);

Szendroedi et al. (2009)

.

38

C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42



ranging from 2.0 to 2.6 mmol/l and hepatic Pi levels ranging from

1.2 to 1.7 mmol/l (

Szendroedi et al., 2009

). Elderly non-diabetic,

but slightly insulin resistant humans, display absolute

c

-ATP levels



in the range of 1.9–3.1 mmol/l, Pi concentrations in the range of 1–

1.9 mmol/l and flux through ATP synthase in the range of 15–

41 mmol/l/min (

Schmid et al., 2011; Szendroedi et al., 2009

). Com-

bining


31

P MRS with an ATP-depleting fructose challenge identified

that in healthy subjects, hepatic b-ATP levels fall by 50% to their

nadir at 12 min, and recover fully at 60 min after fructose adminis-

tration (

Cortez-Pinto et al., 1999

).

Furthermore, enzyme activities of mitochondrial respiratory



chain proteins have been measured in biopsy-derived liver speci-

mens obtained from healthy humans. Relative to citrate synthase

activity, complex I activity was found to range between 30 and

43 nmol/min/mg protein, complex II activity between 28 and

46 nmol/min/mg protein, complex III activity between 38 and

60 nmol/min/mg protein, complex IV activity between 24 and

46 nmol/min/mg protein, and complex V activity between 99 and

167 nmol/min/mg protein (

Pérez-Carreras et al., 2003

). In the same

study, citrate synthase specific activity, reflecting mitochondrial

protein mass, was found to range between 112 and 168 nmol/

min/mg protein in healthy controls.

Measuring biochemical surrogates of hepatic lipid oxidation re-

vealed that fasting b-hydroxybutyrate levels range between 81 and

99

l



mol/l and are suppressed by 50% under conditions of hyperin-

sulinemia in healthy humans (

Sanyal et al., 2001

). Furthermore, it

has been shown that hepatic fatty acid oxidation accounts for 40%

of liver fat uptake and fatty acid esterification for 60%, as assessed

with

11

C-palmitate kinetics and PET imaging in healthy humans



(

Iozzo et al., 2010

).

Of note, the rates of ATP synthesis in human liver are approxi-



mately 50% lower than those in isolated perfused rat liver, indicat-

ing species-specific differences in hepatic energy metabolism

under normal conditions (

Schmid et al., 2008

).

6. Liver mitochondrial function in T2DM



Only recently, two studies reported that patients with T2DM

have lower hepatic ATP turnover measured by

31

P MRS, when com-



pared with age- and BMI-matched non-diabetic subjects (

Schmid


et al., 2011; Szendroedi et al., 2009

) and young lean controls

(

Szendroedi et al., 2009



) (

Table 1


). In detail, the absolute hepatic

concentrations of

c

-ATP and Pi were 23–26% and 28–31% lower



in T2DM (

Szendroedi et al., 2009

) (

Fig. 2


). Furthermore,

c

-ATP



and Pi absolute concentrations were negatively correlated with

insulin-mediated endogenous glucose production (r = À0.67,

p

= 0.01), even after adjusting for hepatocellular fat content, but



they were not significantly associated with peripheral insulin sen-

sitivity (M-value) (

Szendroedi et al., 2009

). Endogenous glucose

production was the only significant independent predictor of

c

-



ATP levels, explaining 57% of variance of hepatic ATP concentra-

tions (


Szendroedi et al., 2009

). A similar group of T2DM patients

featured a 42% reduction in the hepatic flux through ATP synthase,

which was mainly driven by decreased hepatic Pi levels (

Schmid

et al., 2011



). In this study, flux through ATP synthase was positively

correlated with both peripheral and hepatic insulin sensitivity

(r = 0.66–0.72, p < 0.05), independently of hepatic lipid content,

and was negatively correlated with waist circumference and BMI

(r = À0.52 to À0.81, p   0:001). Although the cohort of T2DM pa-

tients displayed adequate glycemic control under oral glucose low-

ering treatment, hepatic flux through ATP synthase correlated

negatively with measures of short- and long-term glycemic control

such as fasting glucose and glycosylated hemoglobin. This indi-

cates that even minor degree of hyperglycemia for long time peri-

ods might impair hepatic mitochondrial function (

Schmid et al.,

2011

).

Likewise, high dietary fructose consumption (>15 g per day) can



severely deplete hepatic ATP stores and impair ATP re-synthesis

after intravenous fructose challenge in obese patients with T2DM

(

Abdelmalek et al., 2012



) (

Table 1


). This was particularly true for

patients with serum uric acid concentrations of 5.5 mg/dl or more.

This study suggests that high dietary fructose intake could contrib-

ute to the worsening of abnormal hepatic energy homeostasis in

T2DM patients, and may further predispose them to the develop-

ment and/or progression of NAFLD (

Abdelmalek et al., 2010; Ouy-

ang et al., 2008

).

Studies in animal models of T2DM such as the diabetes-prone



Psammomys obesus model, are in the same direction with the clin-

ical studies, showing an impaired hepatic energy metabolism in rat

liver tissue after a hypercaloric diabetogenic diet (

Bouderba et al.,

2012

). In this rat model, liver mitochondrial function was assessed



with respirometry in isolated mitochondria and respiratory com-

plex enzyme activities, and was found to be significantly declined

in diabetic animals.

In conclusion, patients with T2DM display lower hepatic energy

metabolism compared to both young and elderly non-diabetic hu-

mans, which is expressed as reduced hepatic flux through ATP syn-

thase and reduced hepatic ATP and Pi concentrations. Of note,

parameters of hepatic mitochondrial metabolism other than hepa-

tic ATP homeostasis have not yet been evaluated in T2DM patients.

7. Liver mitochondrial function in obesity and steatosis

Similar to T2DM, some studies found that overweight and obese

humans have lower hepatic ATP levels compared to normal-weight

humans (

Table 1


). Hepatic ATP content related inversely to BMI not

only in the obese, but also in normal-weight subjects (

Cortez-Pinto

et al., 1999; Nair et al., 2003

). However, obese persons can feature

impaired (

Cortez-Pinto et al., 1999

) or normal (

Nair et al., 2003

)

repletion of hepatic ATP upon fructose challenging. Of note, liver



mitochondria of rats with high fat diet-induced obesity and insulin

resistance exhibit an elevated rate of b-oxidation and TCA cycle

activity, which is however combined with an impaired respiratory

capacity and greater oxidative stress (

Raffaella et al., 2008; Satapati

et al., 2012

).

Hepatic fatty acid oxidation measured by



11

C-palmitate com-

bined with PET imaging is 50% higher (

Fig. 2


), while fatty acid up-

take and esterification are not different in obese compared to lean

persons (

Iozzo et al., 2010

). Another PET study found that a very

low calorie diet decreases by 26% hepatic fatty acid uptake and

ameliorates hepatic insulin resistance in healthy obese persons

(

Viljanen et al., 2009



), without however providing any data about

other aspects of hepatic mitochondrial metabolism such as mito-

chondrial respiration or fat oxidation.

A very frequent comorbidity of obesity is liver steatosis, since

60–90% of persons with steatosis (based on liver biopsies) are over-

weight or obese (

Choudhury and Sanyal, 2004

). Considering that

there are only limited data for obese humans, the few studies con-

ducted in steatotic humans complement those in obese, and shed

more light into the association of obesity with liver mitochondrial

function. From plasma 3-hydroxybutyrate concentrations, hepatic

lipid oxidation was rated similar in overweight patients with stea-

tosis and healthy humans, under both basal and insulin-stimulated

conditions (

Kotronen et al., 2009

) (

Table 1


). However, significant

differences not only in fat oxidation, but also in other aspects of he-

patic mitochondrial function were observed in another study

employing non-invasive in vivo tracer techniques. Sunny et al. re-

ported that persons with steatosis, as defined by liver fat content

of more than 6%, have two-fold greater hepatic mitochondrial oxi-

C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42

39


dative metabolism than those with liver fat content less than 6%

(

Sunny et al., 2011



). Both groups had similar age and comparable

degree of obesity, elevation of liver enzymes and whole-body insu-

lin resistance, whereas hepatic insulin resistance was more pro-

nounced in those with steatosis. In detail, subjects with steatosis

exhibited 100% higher TCA cycle flux, 50% higher rates of lipolysis

and anaplerosis, and 25% higher rates of gluconeogenesis com-

pared to those without steatosis (

Table 1


and

Fig. 2


). Of note, hepa-

tic fat content correlated positively with measures of both

oxidative and non-oxidative mitochondrial metabolism. These

findings support the concept that mitochondrial pathways could

be upregulated in steatosis as an adaptive mechanism in response

to chronic fat overload. Recent animal studies are in absolute

accordance with this contention, by showing elevated TCA cycle

function and mitochondrial b-oxidation in states of diet-induced

hepatic insulin resistance and liver steatosis (

Satapati et al., 2012

).

Taken together, all the above data in humans with obesity and



steatosis illustrate the importance of the homeostasis of hepatic

fatty acid handling. Any increase in hepatic fatty acid uptake would

be balanced by an up-regulation of b-oxidation, which – in the set-

ting of chronic lipid overloading – would stimulate ATP production

and generation of ROS. This would in turn lead to increased triglyc-

eride synthesis and export as VLDL, as well as to hepatic oxidative

stress with promotion of NAFLD and ultimately impairment of

mitochondrial functionality.

8. Liver mitochondrial function in advanced NAFLD

Advanced NAFLD typically associates with insulin resistance

and unfavorable hepatic adaptations of hepatocellular energy

homeostasis, which render the liver more vulnerable to oxidative

injury and cell death, and are reflected by ultrastructural mito-

chondrial defects (

Sanyal et al., 2001

). It has been suggested that

impaired mitochondrial respiratory capacity plays a key role in

the pathogenesis of advanced NAFLD, particularly in the progres-

sion to NASH and cirrhosis (

Begriche et al., 2006; Serviddio et al.,

2011, 2008a

). Studies in humans have failed to support a concept

of generalized defects in mitochondrial b-oxidation in biopsy-pro-

ven NAFLD (

Sanyal et al., 2001

). In contrast, patients with NAFLD

and insulin resistance show greater liver mitochondrial b-oxida-

tion, while those with drug-induced NAFLD have diminished mito-

chondrial oxidation (

Fromenty et al., 2004; Miele et al., 2003

). An

augmented hepatic b-oxidation and oxidative stress seem thus to



accompany peripheral insulin resistance as the most prominent

characteristics of advanced NAFLD (

Sanyal et al., 2001

).

NASH is recognized as the most common subtype of advanced



NAFLD (

Clark, 2006

). In a pilotic study in eight patients with

biopsy-proven NASH, it was found that the ability of these patients

to regenerate their hepatic ATP reserve after a transient ATP deple-

tion induced by fructose ingestion was reduced by 30% compared

to age- and sex-matched controls (

Cortez-Pinto et al., 1999

)

(

Fig. 2



). Of note, in human NASH, functional mitochondrial abnor-

malities are furthermore combined with a number of structural de-

fects such as loss of mitochondrial cristae and paracrystalline

inclusions, and presence of linear crystalline inclusions in swollen

mitochondria (

Sanyal et al., 2001

). Furthermore, it has been shown

that patients with NASH have a severely defective hepatic mito-

chondrial respiratory chain, and this dysfunction correlates posi-

tively with inflammation and peripheral insulin resistance

(

Pérez-Carreras et al., 2003



). More specifically, patients with NASH

were found to exhibit significantly decreased activity of all respira-

tory chain complexes compared to control subjects (42.4–70.6%

reduction for complexes I–V), and increased availability of hepatic

free fatty acids, expressed as an increased ratio of long-chain

acylcarnitine esters relative to free carnitine (

Pérez-Carreras

et al., 2003

) (

Table 1


and

Fig. 2


). It has been also reported that pa-

tients with NASH display an increased proton leak across the elec-

tron transport chain due to a 2-fold increased hepatic expression of

uncoupling protein 2 (UCP-2) (

Serviddio et al., 2008b

) (


Table 1

).

The upregulation of UCP-2 in human NASH induces an uncoupling



between oxidative phosphorylation and ATP production, reduces

the redox pressure on mitochondrial respiratory chain, and acts

as a potential protective mechanism against further liver damage.

UCP-2-dependent mitochondrial uncoupling can be perceived as a

protective mechanism to halt damage progression but compro-

mises on the other hand the liver capacity to respond to acute

high-energy demands, such as ischaemia–reperfusion injury. Addi-

tional abnormalities of hepatic energy metabolism that have been

reported in human and animal NASH (rat models of high fat,

methionine and choline-deficient diet) include increased ROS pro-

duction, abnormal cellular and mitochondrial redox homeostasis,

oxidative stress-mediated depletions of mitochondrial DNA encod-

ing some of the polypeptide components of mitochondrial respira-

tory chain and increased rate of b-oxidation (

Miele et al., 2003;

Morris et al., 2011; Serviddio et al., 2008a; Romestaing et al.,

2008

) (


Table 1

).

The underlying pathophysiology of perturbed hepatic energy



metabolism in NASH can be described by a vicious circle, involving

free fatty acids, lipid peroxidation products and inflammatory

markers (

Fromenty et al., 2004; Pessayre, 2007; Pessayre et al.,

2002, 2001

). This ominous cascade begins with a mild respiratory

dysfunction induced by lipid oversupply in hepatocytes. In addi-

tion, the increased availability of hepatic free fatty acids results

in an increased import of free fatty acids into hepatic mitochondria

and an elevated rate of mitochondrial fatty acid b-oxidation (

Miele

et al., 2003



). Due to the increased rate of b-oxidation, an imbalance

occurs between a high electron input and a restricted electron out-

flow, leading to accumulation of electrons within respiratory com-

plexes I and III and a subsequent reaction of these electrons with

oxygen to form ROS. ROS can promote lipid peroxidation and lipid

peroxidation products can in turn alter mitochondrial DNA and

cause severe oxidative damage to critical mitochondrial proteins

such as cytochrome c oxidase and adenine nucleotide translocator

proteins, resulting in impaired electron flow along the respiratory

chain and establishing a vicious circle between impaired respira-

tory chain capacity, ROS formation, lipid peroxidation and mito-

chondrial damage (

Fromenty et al., 2004; Pessayre, 2007;

Pessayre et al., 2002, 2001

). ROS and lipid peroxidation products

can also promote hepatic inflammation, fibrosis and cell death,

leading to the characteristic necroinflammatory and fibrotic alter-

ations of hepatic tissue observed in advanced stages of NAFLD. Due

to excessive ROS production, the anti-oxidant defense systems of

mitochondria (enzymes and vitamins) are rapidly consumed, and

this depletion of anti-oxidant capacity hampers the inactivation

of ROS and may further augment ROS-mediated damage.

9. Conclusions

The liver is a central player in the physiological regulation of

whole-body energy homeostasis as well as the pathogenesis of

the epidemiologically relevant endocrine disorders obesity and

diabetes. Patients with long-standing T2DM can have lower hepa-

tic ATP synthesis during fasting and after fructose administration.

In advanced NAFLD, abnormal hepatic mitochondrial function

and morphology may occur, possibly due to local lipotoxic, inflam-

matory and oxidative stress pathways. On the other hand, non-dia-

betic obese humans can show normal or even greater hepatic

mitochondrial function than lean humans. Such increases in b-oxi-

dation, ketogenesis and anaplerotic fluxes can be interpreted as a

response to lipid oversupply and may correlate with steatosis.

40

C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42



Thus, we propose that hepatic energy metabolism transitionally

adapts to chronic lipid overload in states of obesity and steatosis

by upregulated oxidative capacity, which can be followed by pro-

gressive decline in liver mitochondrial function during prolonged

chronic insulin resistance, associated with T2DM and NASH

(

Fig. 2



).

Of note, these conclusions are based on a limited number of

small-scale human studies. More clinical studies combining

in vivo


and ex vivo state-of-the art methods are needed to address

hepatic energy metabolism in well-phenotyped and matched co-

horts. Such an approach could help to identify novel markers of

the deterioration of hepatic energy metabolism and predictors of

progression of NAFLD in obesity and diabetes mellitus.

Acknowledgements

C.K. is on leave of absence from the Endocrine Unit and Diabetes

Research Center of Attikon University Hospital, Athens University

Medical School, Greece, and was supported by the National Foun-

dation of State Scholarships of Greece (IKY). The work of M.R. is

or has been supported in part by the European Foundation for

the Study of Diabetes, German Research Foundation, Schmutzler-

Stiftung, Skröder-Stiftung, and the German Center for Diabetes Re-

search (DZD e.V.).

References

Abdelmalek, M.F., Suzuki, A., Guy, C., Unalp-Arida, A., Colvin, R., Johnson, R.J., Diehl,

A.M., 2010. Increased fructose consumption is associated with fibrosis severity

in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961–1971

.

Abdelmalek, M.F., Lazo, M., Horska, A., Bonekamp, S., Lipkin, E.W.,



Balasubramanyam, A., Bantle, J.P., Johnson, R.J., Diehl, A.M., Clark, J.M., 2012.

Higher dietary fructose is associated with impaired hepatic adenosine

triphosphate homeostasis in obese individuals with type 2 diabetes.

Hepatology 56, 952–960

.

Angulo, P., 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221–1231



.

Asmann, Y.W., Stump, C.S., Short, K.R., Coenen-Schimke, J.M., Guo, Z., Bigelow, M.L.,

Nair, K.S., 2006. Skeletal muscle mitochondrial functions, mitochondrial DNA

copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic

subjects at equal levels of low or high insulin and euglycemia. Diabetes 55,

3309–3319

.

Banasch, M., Ellrichmann, M., Tannapfel, A., Schmidt, W.E., Goetze, O., 2011. The



non-invasive (13)C-methionine breath test detects hepatic mitochondrial

dysfunction as a marker of disease activity in non-alcoholic steatohepatitis.

Eur. J. Med. Res. 16, 258–264

.

Begriche, K., Igoudjil, A., Pessayre, D., Fromenty, B., 2006. Mitochondrial dysfunction



in NASH: causes, consequences and possible means to prevent it.

Mitochondrion 6, 1–28

.

Benard, G., Faustin, B., Passerieux, E., Galinier, A., Rocher, C., Bellance, N., Delage, J.P.,



Casteilla, L., Letellier, T., Rossignol, R., 2006. Physiological diversity of

mitochondrial oxidative phosphorylation. Am. J. Physiol. Cell Physiol. 291,

C1172–C1182

.

Bouderba, S., Sanz, M.N., Sánchez-Martín, C., El-Mir, M.Y., Villanueva, G.R., Detaille,



D., Koceïr, E.A., 2012. Hepatic mitochondrial alterations and increased oxidative

stress in nutritional diabetes-prone Psammomys obesus model. Exp. Diabetes

Res. 2012, 430176

.

Bourdel-Marchasson, I., Biran, M., Thiaudière, E., Delalande, C., Decamps, A.,



Manciet, G., Canioni, P., 1996.

31

P magnetic resonance spectroscopy of human



liver in elderly patients: changes according to nutritional status and

inflammatory state. Metabolism 45, 1059–1061

.

Boushel, R., Gnaiger, E., Schjerling, P., Skovbro, M., Kraunsøe, R., Dela, F., 2007.



Patients with type 2 diabetes have normal mitochondrial function in skeletal

muscle. Diabetologia 50, 790–796

.

Browning, J.D., Szczepaniak, L.S., Dobbins, R., Nuremberg, P., Horton, J.D., Cohen, J.C.,



Grundy, S.M., Hobbs, H.H., 2004. Prevalence of hepatic steatosis in an urban

population in the United States: impact of ethnicity. Hepatology 40, 1387–1395

.

Chmelík, M., Schmid, A.I., Gruber, S., Szendroedi, J., Krssák, M., Trattnig, S., Moser, E.,



Roden, M., 2008. Three-dimensional high-resolution magnetic resonance

spectroscopic imaging for absolute quantification of

31

P metabolites in human



liver. Magn. Reson. Med. 60, 796–802

.

Choudhury, J., Sanyal, A.J., 2004. Clinical aspects of fatty liver disease. Sem. Liver Dis.



24, 349–362

.

Clark, J.M., 2006. The epidemiology of nonalcoholic fatty liver disease in adults. J.



Clin. Gastroenterol 40 (Suppl 1), S5-10

.

Cortez-Pinto, H., Chatham, J., Chacko, V.P., Arnold, C., Rashid, A., Diehl, A.M., 1999.



Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a

pilot study. JAMA 282, 1659–1664

.

De Feyter, H.M., van den Broek, N.M., Praet, S.F., Nicolay, K., van Loon, L.J., Prompers,



J.J., 2008. Early or advanced stage type 2 diabetes is not accompanied by in vivo

skeletal muscle mitochondrial dysfunction. Eur. J. Endocrinol. 158, 643–653

.

Fromenty, B., Robin, M.A., Igoudjil, A., Mansouri, A., Pessayre, D., 2004. The ins and



outs of mitochondrial dysfunction in NASH. Diabetes Metab. 30, 121–138

.

García-Ruiz, C., Colell, A., Morales, A., Kaplowitz, N., Fernández-Checa, J.C., 1995.



Role of oxidative stress generated from the mitochondrial electron transport

chain and mitochondrial glutathione status in loss of mitochondrial function

and activation of transcription factor nuclear factor-kappa B: studies with

isolated mitochondria and rat hepatocytes. Mol. Pharmacol. 48, 825–834

.

Holloszy, J.O., 2009. Skeletal muscle ‘‘mitochondrial deficiency’’ does not mediate



insulin resistance. Am. J. Clin. Nutr. 89, 463S–466S

.

Iozzo, P., Bucci, M., Roivainen, A., Någren, K., Järvisalo, MJ., Kiss, J., Guiducci, L.,



Fielding, B., Naum, AG., Borra, R., Virtanen, K., Savunen, T., Salvadori, PA.,

Ferrannini, E., Knuuti, J., Nuutila, P., 2010. Fatty acid metabolism in the liver,

measured by positron emission tomography, is increased in obese individuals.

Gastroenterology 139, 846–856

.

Jornayvaz, F.R., Shulman, G.I., 2012. Diacylglycerol activation of protein kinase C



e

and hepatic insulin resistance. Cell Metab. 15, 574–584

.

Kotronen, A., Seppälä-Lindroos, A., Vehkavaara, S., Bergholm, R., Frayn, K.N.,



Fielding, B.A., Yki-Järvinen, H., 2009. Liver fat and lipid oxidation in humans.

Liver Int. 29, 1439–1446

.

Kozlov, A.V., Staniek, K., Haindl, S., Piskernik, C., Ohlinger, W., Gille, L., Nohl, H.,



Bahrami, S., Redl, H., 2006. Different effects of endotoxic shock on the

respiratory function of liver and heart mitochondria in rats. Am. J. Physiol.

Gastrointest. Liver Physiol. 290, G543–G549

.

Krebs, M., Roden, M., 2004. Nutrient-induced insulin resistance in human skeletal



muscle. Curr. Med. Chem. 11, 901–908

.

Krssak, M., Brehm, A., Bernroider, E., Anderwald, C., Nowotny, P., Dalla Man, C.,



Cobelli, C., Cline, G.W., Shulman, G.I., Waldhäusl, W., Roden, M., 2004.

Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes.

Diabetes 53, 3048–3056

.

Kumashiro, N., Erion, D.M., Zhang, D., Kahn, M., Beddow, S.A., Chu, X., Still, C.D.,



Gerhard, G.S., Han, X., Dziura, J., Petersen, K.F., Samuel, V.T., Shulman, G.I., 2011.

Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease.

Proc. Nat. Acad Sci. USA 108, 16381–16385

.

Kuznetsov, A.V., Strobl, D., Ruttmann, E., Königsrainer, A., Margreiter, R., Gnaiger, E.,



2002. Evaluation of mitochondrial respiratory function in small biopsies of liver.

Anal. Biochem. 305, 186–194

.

Laufs, A., Livingstone, R., Nowotny, B., Nowotny, P., Wickrath, F., Giani, G., Bunke, J.,



Roden, M., Hwang, J.H., 2013. Quantitative liver 31P MR spectroscopy at 3T on a

clinical scanner. Magn. Res. Med. (in press).

Lavoie, J.M., Gauthier, M.S., 2006. Regulation of fat metabolism in the liver: link to

non-alcoholic hepatic steatosis and impact of physical exercise. Cell Mol. Life

Sci. 63, 1393–1409

.

Lockman, K.A., Nyirenda, M.J., 2010. Interrelationships between hepatic fat and



insulin resistance in non-alcoholic fatty liver disease. Curr. Diabetes Rev. 6,

341–347


.

McGarry, J.D., Foster, D.W., 1980. Regulation of hepatic fatty acid oxidation and

ketone body production. Annu. Rev. Biochem. 49, 395–420

.

Miele, L., Grieco, A., Armuzzi, A., Candelli, M., Forgione, A., Gasbarrini, A., Gasbarrini,



G., 2003. Hepatic mitochondrial beta-oxidation in patients with nonalcoholic

steatohepatitis assessed by 13C-octanoate breath test. Am. J. Gastroenterol. 98,

2335–2336

.

Morino, K., Petersen, K.F., Dufour, S., Befroy, D., Frattini, J., Shatzkes, N., Neschen, S.,



White, M.F., Bilz, S., Sono, S., Pypaert, M., Shulman, G.I., 2005. Reduced

mitochondrial density and increased IRS-1 serine phosphorylation in muscle

of insulin-resistant offspring of type 2 diabetic parents. J. Clin. Invest. 115,

3587–3593

.

Morris, E.M., Rector, R.S., Thyfault, J.P., Ibdah, J.A., 2011. Mitochondria and redox



signaling in steatohepatitis. Antioxid Redox Signal 15, 485–504

.

Nair, S., P Chacko, V., Arnold, C., Diehl, A.M., 2003. Hepatic ATP reserve and



efficiency of replenishing: comparison between obese and nonobese normal

individuals. Am. J. Gastroenterol 98, 466–470

.

Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc’h, J., Siliart, B., Dumon, H., 2008.



Liver lipid metabolism. J. Anim Physiol. Anim Nutr. (Berl.) 92, 272–283

.

Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J.L., Diehl, A.M., Johnson, R.J.,



Abdelmalek, M.F., 2008. Fructose consumption as a risk factor for non-alcoholic

fatty liver disease. J. Hepatol. 48, 993–999

.

Pérez-Carreras, M., Del Hoyo, P., Martín, M.A., Rubio, J.C., Martín, A., Castellano, G.,



Colina, F., Arenas, J., Solis-Herruzo, J.A., 2003. Defective hepatic mitochondrial

respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38,

999–1007

.

Pessayre, D., 2007. Role of mitochondria in non-alcoholic fatty liver disease. J.



Gastroenterol. Hepatol. 1, 20–27

.

Pessayre, D., Berson, A., Fromenty, B., Mansouri, A., 2001. Mitochondria in



steatohepatitis. Semin. Liver Dis. 21, 57–69

.

Pessayre, D., Mansouri, A., Fromenty, B., 2002. Nonalcoholic steatosis and



steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis. Am. J.

Physiol. Gastrointest Liver Physiol. 282, 193–199

.

Petersen, K.F., Dufour, S., Shulman, G.I., 2005. Decreased insulin-stimulated ATP



synthesis and phosphate transport in muscle of insulin-resistant offspring of

type 2 diabetic parents. PLoS Med. 2, e233

.

Portincasa, P., Grattagliano, I., Lauterburg, B.H., Palmieri, V.O., Palasciano, G.,



Stellaard, F., 2006. Liver breath tests non-invasively predict higher stages of

non-alcoholic steatohepatitis. Clin. Sci. (Lond.). 111, 135–143

.

C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42



41

Raffaella, C., Francesca, B., Italia, F., Marina, P., Giovanna, L., Susanna, I., 2008.

Alterations in hepatic mitochondrial compartment in a model of obesity and

insulin resistance. Obesity 16, 958–964

.

Roden, M., 2004. How free fatty acids inhibit glucose utilization in human skeletal



muscle. News Physiol. Sci. 19, 92–96

.

Roden, M., 2005. Muscle triglycerides and mitochondrial function: possible



mechanisms for the development of type 2 diabetes. Int. J. Obes. (Lond.) 29,

111–115


.

Roden, M., 2006. Mechanisms of Disease: hepatic steatosis in type 2 diabetes–

pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2, 335–

448


.

Roden, M., Bernroider, E., 2003. Hepatic glucose metabolism in humans–its role in

health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 17, 365–383

.

Romestaing, C., Piquet, M.A., Letexier, D., Rey, B., Mourier, A., Servais, S., Belouze, M.,



Rouleau, V., Dautresme, M., Ollivier, I., Favier, R., Rigoulet, M., Duchamp, C.,

Sibille, B., 2008. Mitochondrial adaptations to steatohepatitis induced by a

methionine- and choline-deficient diet. Am. J. Physiol. Endocrinol. Metab. 294,

110–119


.

Samuel, V.T., Liu, Z.X., Qu, X., Elder, B.D., Bilz, S., Befroy, D., Romanelli, A.J., Shulman,

G.I., 2004. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver

disease. J. Biol. Chem. 279, 32345–32353

.

Sanyal, A.J., Campbell-Sargent, C., Mirshahi, F., Rizzo, W.B., Contos, M.J., Sterling,



R.K., Luketic, V.A., Shiffman, M.L., Clore, J.N., 2001. Nonalcoholic steatohepatitis:

association

of

insulin


resistance

and


mitochondrial

abnormalities.

Gastroenterology 120, 1183–1192

.

Satapati, S., Sunny, N.E., Kucejova, B., Fu, X., He, T.T., Méndez-Lucas, A., Shelton, J.M.,



Perales, J.C., Browning, J.D., Burgess, S.C., 2012. Elevated TCA cycle function in

the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid.

Res. 53, 1080–1092

.

Schmid, A.I., Chmelík, M., Szendroedi, J., Krssák, M., Brehm, A., Moser, E., Roden, M.,



2008. Quantitative ATP synthesis in human liver measured by localized 31P

spectroscopy using the magnetization transfer experiment. NMR Biomed. 21,

437–443

.

Schmid, A.I., Szendroedi, J., Chmelik, M., Krssák, M., Moser, E., Roden, M., 2011. Liver



ATP synthesis is lower and relates to insulin sensitivity in patients with type 2

diabetes. Diabetes Care. 34, 448–453

.

Serviddio, G., Sastre, J., Bellanti, F., Viña, J., Vendemiale, G., Altomare, E., 2008a.



Mitochondrial involvement in non-alcoholic steatohepatitis. Mol. Aspects Med.

29, 22–35

.

Serviddio, G., Bellanti, F., Tamborra, R., Rollo, T., Capitanio, N., Romano, A.D., Sastre,



J., Vendemiale, G., Altomare, E., 2008b. Uncoupling protein-2 (UCP2) induces

mitochondrial proton leak and increases susceptibility of non-alcoholic

steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut 57, 957–965

.

Serviddio, G., Bellanti, F., Vendemiale, G., Altomare, E., 2011. Mitochondrial



dysfunction in nonalcoholic steatohepatitis. Expert Rev. Gastroenterol.

Hepatol. 5, 233–244

.

Sharma, R., Sinha, S., Danishad, K.A., Vikram, N.K., Gupta, A., Ahuja, V., Jagannathan,



N.R., Pandey, R.M., Misra, A., 2009. Investigation of hepatic gluconeogenesis

pathway in non-diabetic Asian Indians with non-alcoholic fatty liver disease

using in vivo ((31)P) phosphorus magnetic resonance spectroscopy.

Atherosclerosis 203, 291–297

.

Smith, B.W., Adams, L.A., 2011. Non-alcoholic fatty liver disease. Crit. Rev. Clin. Lab.



Sci. 48, 97–113

.

Sunny, N.E., Parks, E.J., Browning, J.D., Burgess, S.C., 2011. Excessive hepatic



mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic

fatty liver disease. Cell Metab. 14, 804–810

.

Szendroedi, J., Roden, M., 2009. Ectopic lipids and organ function. Curr. Opin.



Lipidol. 20, 50–56

.

Szendroedi, J., Schmid, A.I., Chmelik, M., Toth, C., Brehm, A., Krssak, M., Nowotny, P.,



Wolzt, M., Waldhausl, W., Roden, M., 2007. Muscle mitochondrial ATP synthesis

and glucose transport/phosphorylation in type 2 diabetes. PLoS Med. 4, 154

.

Szendroedi, J., Chmelik, M., Schmid, A.I., Nowotny, P., Brehm, A., Krssak, M., Moser,



E., Roden, M., 2009. Abnormal hepatic energy homeostasis in type 2 diabetes.

Hepatology 50, 1079–1086

.

Tappy, L., 1995. Regulation of hepatic glucose production in healthy subjects and



patients with non-insulin-dependent diabetes mellitus. Diabetes Metab. 21,

233–240


.

Vendemiale, G., Grattagliano, I., Caraceni, P., Caraccio, G., Domenicali, M., Dall’Agata,

M., Trevisani, F., Guerrieri, F., Bernardi, M., Altomare, E., 2001. Mitochondrial

oxidative injury and energy metabolism alteration in rat fatty liver: effect of the

nutritional status. Hepatology 33, 808–815

.

Vial, G., Dubouchaud, H., Leverve, X.M., 2010. Liver mitochondria and insulin



resistance. Acta Biochim. Pol. 57, 389–392

.

Vial, G., Dubouchaud, H., Couturier, K., Cottet-Rousselle, C., Taleux, N., Athias, A.,



Galinier, A., Casteilla, L., Leverve, X.M., 2011. Effects of a high-fat diet on energy

metabolism and ROS production in rat liver. J. Hepatol. 54, 348–356

.

Viljanen, A.P., Iozzo, P., Borra, R., Kankaanpää, M., Karmi, A., Lautamäki, R., Järvisalo,



M., Parkkola, R., Rönnemaa, T., Guiducci, L., Lehtimäki, T., Raitakari, O.T., Mari,

A., Nuutila, P., 2009. Effect of weight loss on liver free fatty acid uptake and

hepatic insulin resistance. J. Clin. Endocrinol. Metab. 94, 50–55

.

42



C. Koliaki, M. Roden / Molecular and Cellular Endocrinology 379 (2013) 35–42

Energy dissipation in brown adipose tissue: From mice to men

Maarten J. Vosselman, Wouter D. van Marken Lichtenbelt, Patrick Schrauwen

Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands



a r t i c l e i n f o

Article history:

Available online 28 April 2013

Keywords:

Brown adipose tissue

Beige adipocytes

UCP-1

Thermogenesis



Mitochondria

Obesity


a b s t r a c t

In rodents, brown adipose tissue (BAT) is a metabolic organ that produces heat in response to cold and

dietary intake through mitochondrial uncoupling. For long time, BAT was considered to be solely impor-

tant in small mammals and infants, however recent studies have shown that BAT is also functional in

adult humans. Interestingly, the presence and/or functionality of this thermogenic tissue is diminished

in obese people, suggesting a link between human BAT and body weight regulation. In the last years, evi-

dence has also emerged for the existence of adipocytes that may have an intermediate thermogenic phe-

notype between white and brown adipocytes, so called brite or beige adipocytes. Together, these findings

have resulted in a renewed interested in (human) brown adipose tissue and pathways to increase the

activity and recruitment of these thermogenic cells. Stimulating BAT hypertrophy and hyperplasia in

humans could be a potential strategy to target obesity. Here we will review suggested pathways leading

to BAT activation in humans, and discuss novel putative BAT activators in rodents into human

perspective.

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Brown adipose tissue (BAT) is a crucial organ in facultative

thermogenesis (acute response) and has a great plasticity to re-

spond to long-term changes (e.g. cold acclimation), known as

adaptive thermogenesis. In addition to its important role in main-

taining thermal homeostasis, BAT is likely to be involved in en-

ergy homeostasis as well, since ablation of the essential protein

for heat production in BAT, uncoupling protein-1 (UCP-1), leads

to an obese phenotype in mice housed at a thermoneutral tem-

perature (

Feldmann et al., 2009

). Furthermore, it has been shown

in mice that BAT is involved in plasma triglyceride clearance (

Bar-


telt et al., 2011

) and glucose homeostasis (

Guerra et al., 2001;

Gunawardana and Piston, 2012

). This implies the important role

of BAT in rodents to combat obesity and its related metabolic dis-

eases, such as diabetes and cardiovascular disease. Interestingly,

prospective studies have now demonstrated BAT to be present

and functional in most (prevalence varying from 40% to 100%)

young lean human adults by exposing them to cold (

Cypess

et al., 2012; Orava et al., 2011; Ouellet et al., 2012; Vijgen



et al., 2011; Vosselman et al., 2012; Yoneshiro et al., 2012,

2011


). Importantly, an inverse relationship has been shown be-

tween adiposity and BAT activity, indicating a relationship be-

tween BAT and obesity (

Cypess et al., 2009; Saito et al., 2009;

van Marken Lichtenbelt et al., 2009; Vijgen et al., 2011

). In addi-

tion, there is evidence that BAT contributes to nonshivering ther-

mogenesis (

Orava et al., 2011; Ouellet et al., 2012; Vijgen et al.,

2011; Yoneshiro et al., 2011

), although this relationship has not

always been found (

van Marken Lichtenbelt et al., 2009; Vossel-

man et al., 2012

). It has been estimated that fully activated BAT

in humans can contribute to 5% of the basal metabolic rate (

van

Marken Lichtenbelt and Schrauwen, 2011



). This means that stim-

ulation of BAT can have an impact on long-term energy balance

and thus body weight, however only when other factors (e.g. food

intake) remain stable (

Christiansen and Garby, 2002

). Maybe


more important, stimulation of BAT could be supportive in body

weight maintenance. Therefore, finding strategies to increase

BAT activity and recruitment in humans could be important to

combat obesity and its related chronic metabolic diseases. Cur-

rently, much effort is being put in finding ways to increase BAT

thermogenesis and the recruitment of brown adipocytes in ro-

dents. The recent discovery of the so-called brown-in-white

(brite) or beige adipocytes has further increased the interest in

BAT. Increased ‘‘browning’’ of WAT could be an attractive way

to induce weight loss. It is therefore important to find strategies

to increase the thermogenic machinery of BAT and brown-like tis-

sues in humans. This review will provide an overview of the most

promising pathways to increase BAT activity and recruitment in

humans.


0303-7207/$ - see front matter

Ó 2013 Elsevier Ireland Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.mce.2013.04.017

Corresponding author. Address: Department of Human Biology, NUTRIM School



for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center,

P.O. Box 616, 6200 MD Maastricht, The Netherlands. Tel.: +31 (0) 43 3881502; fax:

+31 (0) 43 3670976.

E-mail addresses:

mj.vosselman@maastrichtuniversity.nl

(M.J. Vosselman),

markenlichtenbelt@maastrichtuniversity.nl

(W.D. van Marken Lichtenbelt),

p.schrauwen@maastrichtuniversity.nl

(P. Schrauwen).

Molecular and Cellular Endocrinology 379 (2013) 43–50

Contents lists available at

SciVerse ScienceDirect

Molecular and Cellular Endocrinology

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m c e


2. Brown, beige and white adipose tissue

2.1. Brown versus white adipose tissue

In rodents, brown adipose tissue is clearly distinguishable from

white adipose tissue, since it is richly innervated by the sympa-

thetic nervous system (SNS), is highly vascularized, and contains

brown adipocytes with several small lipid vacuoles and many large

mitochondria (

Frontini and Cinti, 2010

). Unique for the brown adi-

pocyte is the protein UCP-1 located in the inner mitochondrial

membrane, which allows protons in the intermembrane space to

re-enter the mitochondrial matrix without generating ATP, ulti-

mately resulting in heat production.

White and brown adipose tissue in mice can be found in distinc-

tive or classical (i.e. pure white or pure brown) depots (

Fig. 1


A). All

these depots have been characterized by genetic markers, and have

a distinct genetic profile that probably determines its function

(

Waldén et al., 2012



). Note that these adipose tissue depots some-

times are also viewed as one organ, known as the adipose organ

(

Cinti, 2001



).

The largest BAT depot found in mice, iBAT, is predominantly

found in human neonates and infants, and then gradually disap-

pears after childhood (

Heaton, 1972

) and is rarely seen in human

adults (

Fig. 1


B). In adult humans, BAT ([

18

F]FDG-uptake) is often



found in the neck, the mediastinum (para-aortic), and above the

kidney (suprarenal), which is comparable to some BAT depots

(cBAT, mBAT, prBAT) in mice. Furthermore, BAT in humans is lo-

cated along the spinal cord, in the axillary and abdominal region

(suprarenal and perihepatic), and sometimes in areas such as the

abdominal wall and acromial–clavicular area. The most prominent

and most reported BAT depot in humans is supraclavicular BAT,

which has not been found as a distinct depot in mice.

2.2. Brown like cells in white adipose tissue

In addition to classical BAT, a distinct type of adipocytes has

been found within WAT depots, the so-called brite (

Petrovic


et al., 2010

) or beige adipocytes (

Wu et al., 2012

). However, this

is still under dispute as white fat cells may differentiate into brown

fat cells (

Cinti, 2002

). At present, no consensus on the terminology

of these brown-like white adipocytes has been reached, and is ur-

gently awaited. However, for sake of clarity we will refer to these

cells as beige adipocytes in the remainder of this review. These

beige adipocytes can appear within WAT depots after long-term

adrenergic stimulation and cold exposure, and especially appear

in the inguinal depot. In the basal state, these beige cells resemble

the unilocular white adipocytes, whereas upon stimulation these

cells obtain a more brown like phenotype. Furthermore, these cells

do not express the myogenic markers nor the brown adipocyte

specific markers Zic1, Lhx8, Meox2, and PRDM16 (

Petrovic et al.,

2010


), but express specific markers as well (e.g. Hoxc9) (

Waldén


et al., 2012

). Interestingly,

Wu et al. (2012)

were able to isolate

brown-like cells from the subcutaneous (inguinal) adipose depot

and found a distinct pool of progenitors giving rise to these so-

called beige cell lines. Linkage of the expressed genes after micro-

array analysis in these cell lines revealed that beige adipocytes are




Download 2.44 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   23




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling