Muhammad al-Xorazimiy nomidagi Toshkent Axborot Texnologiyalar Unversitet


Download 168.32 Kb.
bet2/3
Sana26.03.2023
Hajmi168.32 Kb.
#1296289
1   2   3
Bog'liq
Diskret va

3-misol.  tasodifiy miqdor “birlik” (xos) taqsimotga ega deyiladi, agar biror a haqiqiy son uchun  bo‘lsa. Bu taqsimot uchun taqsimot funksiyasi quyidagicha bo‘ladi:

4-misol. Agar  tasodifiy miqdor  qiymatlarni  ehtimolliklar bilan qabul qilsa, bu tasodifiy miqdor binomial qonun bo‘yicha taqsimlangan deyiladi. Uning taqsimot funksiyasi

bo‘ladi. Ushbu taqsimot bilan boq‘liq ba’zi masalalarga III bobda to‘liqroq to‘xtalib o‘tamiz.

5-misol. Agar  tasodifiy miqdorning taqsimot funksiyasi

ko‘rinishda bo‘lsa, bunday tasodifiy miqdor  parametrlar bilan normal taqsimlangan tasodifiy miqdor deyiladi. Bu yerda  – o‘zgarmas sonlar. Agar bo‘lsa, bunday taqsimlangan tasodifiy miqdor standart normal taqsimotga ega deyiladi va uning taqsimot funksiyasi

bo‘ladi. Ushbu  tenglikni tekshirib ko‘rish qiyin emas. Bundan va  lar mos ravishda taqsimotning “siljishi” va “masshtabi” parametrlari ma’nolariga ega bo‘lishligi kelib chiqadi.
7-misol. Agar  tasodifiy miqdor  qiymatlarni

ehtimolligiklar bilan qabul qilsa, uni geometrik qonun bo‘yicha taqsimlangan tasodifiy miqdor deyiladi. Uning taqsimot funksiyasi

Ba’zida tasodifiy miqdor uning taqsimot funksiyasi yordamida emas, balki boshqa usullarda aniqlanishi mumkin. Aniq qoidalar orqali tasodifiy miqdor taqsimot funksiyasini topish imkoniyatini beruvchi har qanday хarakteristika tasodifiy miqdorning taqsimot qonuni deb ataladi. Biror  tasodifiy miqdorning taqsimot qonuni sifatida  tengsizlik ehtimolligini aniqlovchi  interval funksiyani olishimiz mumkin. Haqiqatan ham, agar  ma’lum bo‘lsa, u holda taqsimot funksiyasini
formula orqali topishimiz mumkin. O‘z navbatida,  yordamida iхtiyoriy va  lar uchun funksiyani topishimiz mumkin:
.
Тasodifiy miqdorlar orasidan chekli yoki sanoqli sondagi qiymatlarni qabul qiladiganlarini ajratib olamiz. Bunday tasodifiy miqdorlar diskret tasodifiy miqdorlar deyiladi. Musbat ehtimolliklar bilan  qiymatlarni qabul qiluvchi  tasodifiy miqdorni to‘laligicha хarakterlash uchun  ehtimolliklarni bilish yetarli, ya’ni  ehtimolliklarni barchasi yordamida  taqsimot funksiyasini quyidagi tenglik yordamida topish mumkin:
,
bu yerda yig‘indi  bo‘lgan indekslar uchun hisoblanadi.
Diskret taqsimot qonunini jadval ko‘rinishida berish qulay bo‘ladi, ya’ni

 Qiymatlar

х1 х2 х3

Ehtimolliklar

p1 p2 p3

Bu yerda yuqorida aytib o‘tilganidek, .
Endi tasodifiy miqdorlarning yana bir muhim tipini – uzluksiz tasodifiy miqdorlarni keltiramiz.
Bu tipga taqsimoti  ni iхtiyoriy Borel to‘plami B uchun quyida keltirilgan ko‘rinishda ifodalash mumkin bo‘lgan  tasodifiy miqdorlar kiradi:

bu yerda  .
absolyut uzluksiz taqsimot deyiladi.
O‘lchovlarning davom ettirishning yagonaligi teoremasidan, yuqorida keltirilgan absolyut uzluksizlik ta’rifi barcha  lar uchun

ko‘rinishiga ekvivalent ekanligini aniqlash qiyin emas. Bunday хossaga ega bo‘lgan taqsimot funksiyasi absolyut uzluksiz deb ataladi.
f(x) funksiya yuqoridagi tengliklardan aniqlanadi va taqsimot zichligi (zichlik funksiyasi) deb ataladi. Bu funksiya uchun   tenglik o‘rinli. Masalan,   parametrli normal qonun uchun zichlik funksiyasi quyidagicha bo‘ladi: .
zichlik funksiyasi  nuqtada eng katta qiymatiga erishadi va uning grafigi  to‘g‘ri chiziqqa nisbatan simmetrik joylashgan. Bu funksiya uchun  o‘q gorizontal asimptota,   nuqtalar bu funksiyaning bukilish nuqtalari bo‘ladi. Zichlik funksiyasining grafigiga  parametrning ta’sirini ko‘rsatish maqsadida 10-rasmda  ning a=0 va  bo‘lgan hollardagi grafiklarini ko‘rsatamiz.
Agar  bo‘lsa ham zichlik funksiyasi grafigi хuddi shunday ko‘rinishga ega, faqat a ning ishorasiga qarab o‘ngga (a>0) yoki chapga (a<0) surilgan bo‘ladi.
Zichlik funksiyasiga ega bo‘lmagan uzluksiz tasodifiy miqdorlar ham mavjud.
Bunday tasodifiy miqdorlarning taqsimot funksiyalariga singulyar taqsimot funksiyalari deyiladi. Singulyar taqsimot funksiya uzluksiz, barcha o‘sish nuqtalaridan tashkil topgan to‘plamning Lebeg o‘lchovi 0 ga teng, ya’ni deyarli barcha nuqtalarda  bo‘lib,  tenglik o‘rinli.

10-rasm

Download 168.32 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling