Misol. xosmas integral bo`lganda yaqinlashadi va bo`lganda uzoqlashadi.
Ikkinchi tur xosmas integrallar uchun ham birinchi tur xosmas integrallarda o`rinli bo`lgan ularni hisoblash usullari va yaqinlashish alomatlari o`rinli. Ularning hammasiga to`xtalmay, asosiylarini keltiramiz.
1-Teorema. (Koshi kriteriyasi). (3)-xosmas integralning yaqinlashuvchi bo`lishi uchun quyidagi shartning bajarilishi zarur va yetarlidir: uchun tengsizlikni qanoatlantiruvchi va lar uchun
tengsizlik bajariladi.
2-Teorema. va funksiyalar da berilgan bo`lib, b shu funksiyalarning maxsus nuqtasi bo`lsin. Agar da
bo`lsa, u holda integralning yaqinlashuvchiligidan ning yaqinlashuvchiligi; integralning uzoqlashuvchiligidan ning uzoqlashuvchiligi kelib chiqadi.
Natija. Agar bo`lib, bo`lsa (3)-xosmas integral yaqinlashadi. Agar bo`lib, bo`lsa, u holda (3)-xosmas integral uzoqlashadi .
3-Teorema. Agar da bo`lsa, unda va integrallar bir vaqtda yaqinlashadi yoki uzoqlashadi.
4-Teorema. va funksiyalar da berilgan bo`lib, ular quyidagi shartlarni bajarsin:
(Abel alomati) a) integral yaqinlashuvchi,
b) funksiya da monoton va
chegaralangan;
(Dirixle alomati) a)
b) funksiya da monoton va
.
U holda xosmas integral yaqinlashuvchi bo`ladi.
Do'stlaringiz bilan baham: |