1972 CAT scan Engineer Godfrey Hounsfield of Britain’s EMI Laboratories and South African–born American physicist Allan Cormack of Tufts University develop the computerized axial tomography scanner, or CAT scan. With the help of a computer, the device combines many x-ray images to generate cross-sectional views as well as three-dimensional images of internal organs and structures. Used to guide the placement of instruments or treatments, CAT eventually becomes the primary tool for diagnosing brain and spinal disorders. (In 1979, Hounsfield and Cormack are awarded the Nobel Prize in physiology or medicine.)
1972 MRI adapted for medical purposes Using high-speed computers, magnetic resonance imaging (MRI) is adapted for medical purposes, offering better discrimination of soft tissue than x-ray CAT and is now widely used for noninvasive imaging throughout the body. Among the pioneers in the development of MRI are Felix Bloch and Edward Purcell (Nobel Prize winners in 1952), Paul Lauterbur, and Raymond Damadian. 1972 MRI adapted for medical purposes Using high-speed computers, magnetic resonance imaging (MRI) is adapted for medical purposes, offering better discrimination of soft tissue than x-ray CAT and is now widely used for noninvasive imaging throughout the body. Among the pioneers in the development of MRI are Felix Bloch and Edward Purcell (Nobel Prize winners in 1952), Paul Lauterbur, and Raymond Damadian. 1981 First scanning tunneling microscope Gerd Binnig and Heinrich Rohrer, German physicists working at the IBM Research Laboratory in Zürich design and build the first scanning tunneling microscope (STM), with a small tungsten probe tip about one or two atoms wide. In 1986, Binnig, Cal Quate, and Christoph Gerber introduce the atomic force microscope (AFM), which is used in surface science, nanotechnology, polymer science, semiconductor materials processing, microbiology, and cellular biology. For invention of the STM Binnig and Rohrer share the 1986 Nobel Prize in physics with Ernst Ruska, who receives the award for his work on electron optics.
1987 Echo-planar imaging (EPI) Echo-planar imaging (EPI) is used to perform real-time movie imaging of a single cardiac cycle. (Peter Mansfield of the School of Physics and Astronomy, University of Nottingham, first developed the EPI technique in 1977.) In 1993 the advent of functional MRI opens up new applications for EPI in mapping regions of the brain responsible for thought and motor control and provides early detection of acute stroke. 1987 Echo-planar imaging (EPI) Echo-planar imaging (EPI) is used to perform real-time movie imaging of a single cardiac cycle. (Peter Mansfield of the School of Physics and Astronomy, University of Nottingham, first developed the EPI technique in 1977.) In 1993 the advent of functional MRI opens up new applications for EPI in mapping regions of the brain responsible for thought and motor control and provides early detection of acute stroke. 1990 Hubble Space Telescope The Hubble Space Telescope goes into orbit on April 25, deployed by the crew of the Space Shuttle Discovery. A cooperative effort by the European Space Agency and NASA, Hubble is a space-based observatory first dreamt of in the 1940s. Stabilized in all three axes and equipped with special grapple fixtures and 76 handholds, the space telescope is intended to be regularly serviced by shuttle crews over the span of its 15-year design life. 1990s–2000 Spacecraft imaging instruments NASA launches robotic spacecraft equipped with a variety of imaging instruments as part of a program of solar system exploration. Spacecraft have returned images not only from the planets but also from several of the moons of the gas giants.
As a frequent purveyor of domestic dreams, Good Housekeeping magazine was on familiar ground in 1930 when it rhetorically asked its readers: "How many times have you wished you could push a button and find your meals deliciously prepared and served, and then as easily cleared away by the snap of a switch?" No such miraculous button or switch was in prospect, of course—not for cooking meals, cleaning the house, washing clothes, or any of the other homemaking chores that, by enduring custom, mainly fell to women. As a frequent purveyor of domestic dreams, Good Housekeeping magazine was on familiar ground in 1930 when it rhetorically asked its readers: "How many times have you wished you could push a button and find your meals deliciously prepared and served, and then as easily cleared away by the snap of a switch?" No such miraculous button or switch was in prospect, of course—not for cooking meals, cleaning the house, washing clothes, or any of the other homemaking chores that, by enduring custom, mainly fell to women.
Seven decades later American women averaged 4 hours of housework a day, only a moderate decline since 1930, accompanying the movement of large numbers of women into the workforce. What changed—and had been changing since the beginning of the century—was the dramatic easing of drudgery by new household appliances. Effort couldn't be engineered out of existence by stoves, washing machines, vacuum cleaners, dishwashers, and other appliances, but it was radically redefined. Seven decades later American women averaged 4 hours of housework a day, only a moderate decline since 1930, accompanying the movement of large numbers of women into the workforce. What changed—and had been changing since the beginning of the century—was the dramatic easing of drudgery by new household appliances. Effort couldn't be engineered out of existence by stoves, washing machines, vacuum cleaners, dishwashers, and other appliances, but it was radically redefined.
Do'stlaringiz bilan baham:
|