Oddiy differentsial tenglamalar uchun chegaraviy masalalarni taqribiy yechish usullari. Kollokatsiya, eng kichik kvadratlar, sohachalar, Galyorkin usullari


Download 261.5 Kb.
bet3/5
Sana24.12.2022
Hajmi261.5 Kb.
#1061463
1   2   3   4   5
Bog'liq
1-ma`ruza(latin)

4. Kollokatsiya usuli

Usulning nomlanishi «collocation» ingliz so`zidan olingan bo`lib, o`zaro joylashuv, taqsimlanish ma`nosini anglatadi.


Bu usulga ko`ra [a, b] kesmaning ichida n ta x1, x2, ..., xn nuqta olinib, ularda tafovut nolga tenglashtiriladi:
(5)
Olingan x1, x2, ..., xn nuqtalarga kollokatsiya nuqtalari deyiladi. Olingan (5) chiziqli algebraik tenglamalar sistemasini (CHATS) ai larga nisbatan
(6)
shaklda yozamiz.
Uni echib, ai, larni (3) ga qo`yib, (1), (2) masalaning taqribiy yn(x) echim topiladi.


5. Integral eng kichik kvadratlar usuli

Bu usulda tafovut kvadratidan tuzilgan



integralning minimal qiymati izlanadi.

Ekstremumning zaruriy shartiga asosan integral minimal qiymatga ega bo`lishi uchun


(7)
bo`lishi kerak.
(7) shartlar (4) ga asosan ai, larga nisbatan chiziqli algebraik tenglamalar sistemasiga keladi
(8)
bunda - skalyar ko`paytma.
Agar L1, ..., Ln funktsiyalar sistemasi [a,b] kesmada chiziqli erkli bo`lsa, u holda (8) sistema yagona yechimga ega bo`ladi.


6. Diskret eng kichik kvadratlar usuli

Bu erda I integralning minimumi o`rnida



yiғindining minimal qiymati izlanadi. Bunda xi(a,b) – ixtiyoriy nuqtalar, Nn.
Bu usulda ham ai larga nisbatan (8) sistemani hosil qilamiz. Faqat skalyar ko`paytma bu holda

ko`rinishida topiladi.
Agar N=n bo`lsa, u holda bu usul kollokatsiya usuliga keladi.



Download 261.5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling