Однослойная плоская стенка


Download 35.07 Kb.
bet1/2
Sana17.06.2023
Hajmi35.07 Kb.
#1552484
  1   2

Однослойная плоская стенка
Имеется однородная плоская стенка с коэффициентом теплопроводности л и толщиной д. По одну сторону стенки находится горячая среда с температурой по другую - холодная с температурой tж2. Температуры поверхностей стенки неизвестны, обозначим их буквами tс1 и tс2 (рис. 6-2). Задано значение суммарного коэффициента теплоотдачи на горячей стороне б1 на холодной - б2.
При установившемся тепловом состоянии количество теплоты, переданное от горячей жидкости к стенке, равно количеству теплоты, переданному через стенку, и количеству теплоты, отданному от стенки к холодной жидкости. Следовательно, для плотности теплового потока q можно написать три выражения:
Из этих уравнений определяются частные температурные на поры, а именно:
Складывая их, получаем полный температурный напор:
из которого определяется значение плотности теплового потока
и значение коэффициента теплопередачи
Таким образом, чтобы вычислить значение коэффициента теплопередачи k для плоской стенки, необходимо знать толщину этой стенки д, коэффициент теплопроводности л и значения коэффициентов теплоотдачи б1 и б2.
Величина, обратная коэффициенту теплопередачи, называется общим термическим сопротивлением теплопередачи. Из уравнения (6-5) эта величина равна:
Теплопередача через однослойную плоскую стенку; характер изменения температуры в теплоносителях и разделяющей их стенке
Из этого соотношения следует, что общее термическое сопротивление равно сумме частных:
где Rбl = 1/б1 - частное термическое сопротивление теплоотдачи со стороны горячего теплоносителя; Rл = д/л - частное термическое сопротивление теплопроводности (стенки); Ra2 = 1/б2 - частное термическое сопротивление теплоотдачи со стороны холодного теплоносителя.
2. Многослойная плоская стенка
Рассматривается стенка, состоящая из нескольких, например двух, слоев (рис. 6-3). Толщины слоев д1 и д2, коэффициенты теплопроводности л1 и л2. С одной стороны находится горячая среда с температурой tж1 с другой - холодная с температурой tж2. Значение суммарного коэффициента теплоотдачи с горячей стороны бс холодной б2.
При установившемся тепловом состоянии системы плотность теплового потока постоянна и поэтому можно написать:
Из этих уравнений определяются частные температурные напоры:
Складывая раздельно левые и правые части уравнений, получаем полный температурный напор
из которого определяется значение плотности теплового потока 1
и значение коэффициента теплопередачи для двухслойной плоской стенки
Распределение температур при теплопередаче через плоскую одно- и многослойную стенки представлено соответственно на рис. 6-2 и 6-3.
Неизвестные температуры могут быть определены из уравнений (е):
Если стенка состоит из нескольких слоев толщиной д1, д2., дn и коэффициенты теплопроводности их соответственно л1, л2,…, лn, то общее термическое сопротивление теплопередачи будет равно:
В этом случае уравнение (6-5) принимает вид:
Теплопередача через многослойную плоскую стенку
Температуры стенки можно определить и графически. Один из таких способов был описан в гл. 1. Поэтому мы здесь рассмотрим второй, который основан на замене термического сопротивления горячей и холодной среды термическим сопротивлением твердой стенки с таким же коэффициентом теплопроводности, как и действительная стенка.
Пусть температуры наружных поверхностей воображаемой стенки соответственно равны температурам горячей и холодной среды tж1 и tж2 (рис. 6-4). Количество передаваемой теплоты остается без изменения. Тогда общая толщина Д этой воображаемой стенки определяется из соотношения
откуда
Здесь величины л/а1 и л/б2 имеют размерность длины, м, они определяют собой эквивалентные толщины. При графическом построении сначала строится реальная стенка толщиной д (в любом масштабе), затем по одну сторону от нее в том же масштабе откладывается значение л/б1 а по другую - значение л/б2. Из крайних точек а и b по вертикали в некотором масштабе откладываются значения температур tж1 и tж2. Полученные точки А и С соединяются прямой линией. Точки пересечения этой прямой с поверхностями действительной стенки дают значения искомых температур tс1 и tс2.
Действительно, из подобия треугольников АBС и АВЕ имеем, что DЕ/ВС = АD/АВ, откуда
Согласно уравнению (б)
следовательно, отрезок МЕ=МD-ЕD = tж1 - (tЖ1 - tc1) = tc1. Таким же путем можно показать, что отрезок NG в выбранном масштабе температуры равен tс2.
Если стенка многослойная и требуется определить лишь температуру наружных поверхностей, то построение производят точно таким же образом, как и для однослойной стенки, имея дело лишь со средним коэффициентом теплопроводности многослойной стенки. Температура же между слоями в точке А определяется по пересечению двух лучей.

Download 35.07 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling