Окисление. Понятие и виды. Восстановление. Понятие и виды
Окислительно-восстановительные реакции
Download 0.95 Mb.
|
8-TEMA
3. Окислительно-восстановительные реакции
Окислительно-восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел Zn - 2 = Zn2+ Восстановлением называется присоединение электронов атомом, молекулой или ионом: Cl2 + 2 = 2Cl- Окислителями называется нейтральный атом, молекула или ион, принимающие электроны (во втором примере молекула хлора Cl2), восстановителями - нейтральный атом, молекула или ион, отдающие электроны (в первом примере - атом Zn). Окисление и восстановление - взаимосвязанные процессы, которые всегда протекают одновременно. Когда одно вещество окисляется, то другое восстанавливается, и наоборот. Так, приведённые выше частные реакции окисления и восстановления составляют единый процесс О.-в.: Zn + Cl2 = ZnCl2 Здесь Zn окисляется до Zn2+, а Cl2 восстанавливается до 2Cl-. В химии окислительно-восстановительные реакции принадлежат к числу наиболее распространённых. Например, на них, как правило, основано получение простых веществ (металлов и неметаллов) CuO + H2 =Cu + H2O, КВг + Cl2 = Br2 + 2KCl В основе технического производства таких важнейших химических продуктов, как аммиак Дыхание, усвоение растениями углекислого газа с выделением кислорода обмен веществ и др. биологически важные явления представляют собой реакции О.-в. При составлении уравнений реакций О.-в. основная трудность заключается в подборе коэффициентов, особенно для реакций с участием соединений, в которых химическая связь носит не ионный, а ковалентный характер. В этом случае полезны понятия электроотрицательности и окислительного числа (степени окисления). Электроотрицательность - способность атома в молекуле притягивать и удерживать около себя электроны. Степень окисления - такой заряд, который возник бы на атоме в молекуле, если бы каждая пара электронов, связывающая его с др. атомами, была полностью смещена к более электроотрицательному атому. Нахождение степени окисления атома в молекуле основано на том, что молекула в целом должна быть электрически нейтральной. При этом учитывается, что степень окисления атомов некоторых элементов в соединениях всегда постоянна (щелочные металлы +1, щёлочноземельные металлы и цинк +2, алюминий +3, кислород, кроме перекисей, -2 и т.д.). Степень окисления атома в простых веществах равна нулю, а одноатомного иона в ионном соединении равна заряду этого иона. Например, рассчитаем степень окисления атома Cr в соединении K2Cr2O7. Пользуясь постоянными значениями степеней окисления для К и О, имеем 2·(+1) + 7·(-2) = -12. Следовательно, степень окисления одного атома Cr (чтобы сохранить электронейтральность молекулы) равна +6. На основе введённых понятий можно дать другое определение О.-в.: окислением называется увеличение степени окисления, восстановлением называется понижение степени окисления. Восстановителями являются почти все металлы в свободном состоянии, отрицательно заряженные ионы неметаллов (S2-- 2 = S°), положительно заряженные ионы металлов в низшей степени окисления ( ), сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления ( , ). В промышленности и технике широко используются такие восстановители, как углерод и окись углерода (восстановление металлов из окислов) ZnO + С= Zn + СО, FeO +СО = Fe + СО2 сульфит натрия Na2SO3 и гидросульфит натрия NaHSO3 - в фотографии и красильном деле, металлический натрий и свободный водород - для получения чистых металлов 4 + 4Na = Ti + 4NaCI,2 +2Н2 = Ge + 2H2O Окислителями могут быть нейтральные атомы неметаллов (в особенности галогенов и кислорода), положительно заряженные ионы металлов в высшей степени окисления (Sn4+ + 2 = Sn2+), сложные ионы и молекулы, содержащие атомы элементов в более высокой степени окисления ( , , ). Промышленное значение как окислители имеют: кислород (особенно в металлургии), озон, хромовая и двухромовая кислоты и их соли, азотная кислота, перекись водорода, перманганат калия, хлорная известь и др. Самый сильный окислитель - электрический ток (окисление происходит на аноде). Для подбора коэффициентов в уравнениях реакций О.-в. служит общее правило: число электронов, отданных восстановителем, должно равняться числу электронов, принятых окислителем. Применяют обычно два метода подбора коэффициентов: метод электронного баланса и электронно-ионный метод. В методе электронного баланса подсчёт числа принятых и отданных электронов производят на основании значений степеней окисления элементов до и после реакции. Например, Таким образом, является окислителем, а - восстановителем. Составляют частные реакции окисления и восстановления: В соответствии с приведённым выше правилом числа отданных и принятых электронов уравнивают. Полученные величины подставляют в исходное уравнение: 2KClO3 = 2KCl + 3O2 В электронно-ионном методе схему реакции записывают в соответствии с общими правилами составления ионных реакций, т. е. сильные электролиты записывают в виде ионов, а неэлектролиты, слабые электролиты, газы и осадки - в виде молекул. Не изменяющиеся в результате реакции ионы в такую схему не входят. Например, KMnO4 + KI + H2SO4 ® K2SO4 + I2+ MnSO4 + H2O, в ионном виде: Рассчитав степени окисления, определяют окислитель и восстановитель и составляют частные реакции окисления и восстановления: 2I- - 2 = I2, Во втором уравнении, перед тем как записать переход электронов, необходимо составить "материальный" баланс, т.к. в левой части уравнения есть атомы О, а в правой их нет. Избыточные атомы О связываются в молекулы воды ионами Н+, присутствующими в сфере реакции (кислая среда): Далее, как и в первом методе, находят коэффициенты-множители к частным уравнениям для достижения электронного баланса (в приведённом примере 5 и 2 соответственно). Окончательное уравнение имеет вид: . Полученные коэффициенты подставляют в исходное уравнение: KMnO4 + 10KI + 8H2SO4 = 6K2SO4 + 5I2 + 2MnSO4 + 8H2O. Аналогично составляют и уравнения реакций О.-в. в щелочной среде (вместо ионов Н+ в частных уравнениях фигурируют ионы OH-). Т. о., в уравнивании реакций по второму методу учитывают характер реакционной среды (кислая или щелочная либо нейтральная), которая сильно влияет и на направление реакции О.-в. и на продукты, получаемые в результате реакции. Например, равновесие окислительно-восстановительной реакции в кислой среде смещено влево, а в щелочной - вправо. Сильный окислитель ион в кислой среде восстанавливается до иона Mn2+, в щелочной среде - до иона , в нейтральной - до молекулы . Download 0.95 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling