«oliy matematika» fanining «differensial tenglamalar»


Download 0.52 Mb.
bet15/39
Sana10.06.2020
Hajmi0.52 Mb.
#116758
1   ...   11   12   13   14   15   16   17   18   ...   39
Bog'liq
Differensial tenglamalar (Mamatov)


Misol. x=()3--1 tenglamani yechish uchun

=t deb belgilash kiritamiz. Natijada

x=t3-t-1



Bu erdan dy=dx=t(3t2-1), y=3t4/4-t2/2+C1

Demak,


sistema izlanayotgan integral chiziqning parametrik formasini ifodalaydi.



  1. (3.6) quyidagi ko’rinishda bo’lsin.

F(y, )=0 (3.8)

Agar tenglamani ga nisbatan yechish qiyin bo’lsa, quyidagicha parametr kiritamiz: ó=(t), y’=(t)

Bu erdan dy=dx bo’lganligidan dx=dy/=’(t)dt/(t), b demak,

izlanayotgan integral chiziqning parametrik tenglamasidir.



Xususiy holda, (3.8) tenglamani y ga nisbatan yechish mumkin bo’lsa, parametr deb olish qulay:

y=() da =t belgilash kiritsak y=(t),

dx=dy/=’(t)/t dt




Download 0.52 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   ...   39




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling