O’zbekiston respublikasi oliy


Download 1.99 Mb.
bet2/21
Sana12.11.2020
Hajmi1.99 Mb.
#144457
1   2   3   4   5   6   7   8   9   ...   21
Bog'liq
Tajriba mashg'ulot Informatika 1-kurs IO'M Tayyor


Ishning borish tartibi:

1.Operatsion tizim misolida 3 ta o’lchov bo’yicha tahlil qilamiz

Sinataktik jihatdan:Bo’limlardan,menyulardan,oynalardan,matnli,raqmamli, grafikli axboratlarni o’zida jamlaydi va qayta ishlaydi.

Semantik jihatdan:Foydalanuvchi va kompyuter o’rtasida muloqat o’rnatadi.Berilgan buyruqlarga ko’ra ammalar bajaradi.

Pragmatik jihatdan:Microsoft kompanyasini mahsuloti xavfsizlik jihatdan ximoyalangan,foydalanuvchilar uchun qiymatga ega.

Topshiriqlar:

1.Har bir talaba mustaqil tarzda ixtiyoriy turdagi axborotni oladi uning qayta ishlash usullarini ko’rsatadi.

2.Olingan axborotni 3 jixati bo’yicha tasniflab beradi.

Tajriba ishi № 3

Mavzu: Matnli, ovozli, va grafik axborotlar o’lchovlari.

Ishdan maqsad:Turli xildagi axborotlarni o’lchov birliklarini va ularning ifodalanishlarini o’rganish.

Kerakli jihozlar: Kompyuter,proyektor,tashqi xotira qurilmalari,tarmoq qurilmalari.

Nazariy qism:

Turli xodisali axborotlar o‘lchash uchun ko‘rinishdagi K.Shyennon formulasidan foydalaniladi. Bunda I – axborot o‘lchovi, N – mumkin bo‘lgan hodisalar soni, ri – har bir hodisa ehtimolligi.

Bir xil hodisali axborotlarni o‘lchashning asosiy formulasi Ralf Xartli tomonidan 1928 yili taklif qilingan bo‘lib, u axborotni o‘lchashdagi ilmiy asoslangan formulasi hisoblanadi. m ta harfdan tashkil topgan alfavit yordamida axborot tuzish talab qilingan bo‘lsin. Turli xildagi axborotlar tuzish soni N=mn ga teng bo‘ladi. Bunda N – turli ko‘rinishdagi axborotlarning maksimal soni, m – alfavitdagi belgilar soni, n – axborotdagi belgilar soni.



Masalan, ikkita «A» va «V» xarflaridan tashkil topgan alfavit yordamida uzunligi 3 ta belgidan iborat ma’lumotlar soni 8 taga teng bo‘ladi. Chunki, m=2, n=3 ga teng bo‘lib, INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET INCLUDEPICTURE "http://upload.wikimedia.org/math/d/0/4/d0438f7b6961549666550e9db5ff907b.png" \* MERGEFORMATINET ta turli axborotni hosil qilishimiz mumkin. Ya’ni «AAA», «AAV», «AVA», «AVV», «VAA», «VAV», «VVA», «VVV» boshqa variantlar yo‘q. 

Xartli formulasi I=log2N=nlog2m yoki N=2I ko‘rinishida aniqlanadi. Bunda I - axborot miqdori, bit.



Ikkili sonning razryadlari soniga ko‘ra kodlash variantlari sonining bog‘liqligi quyidagi jadvallarda berilgan

I=log2N formulasiga ko‘ra 1 dan 64 gacha bo‘lgan sonlarning logarifmlari jadvali

I

log2N

I

log2N

I

log2N

I

log2N

1

0

17

4,08746

33

5,04439

49

5,61471

2

1

18

4,16993

34

5,08746

50

5,64386

3

1,58496

19

4,24793

35

5,12928

51

5,67243

4

2

20

4,32193

36

5,16993

52

5,70044

5

2,32193

21

4,39232

37

5,20945

53

5,72792

6

2,58496

22

4,45943

38

5,24793

54

5,75489

7

2,80735

23

4,52356

39

5,28540

55

5,78136

8

3

24

4,58496

40

5,32193

56

5,80735

9

3,16993

25

4,64386

41

5,35755

57

5,83289

10

3,32193

26

4,70044

42

5,39232

58

5,85798

11

3,45943

27

4,75489

43

5,42626

59

5,88264

12

3,58496

28

4,80735

44

5,45943

60

5,90689

13

3,70044

29

4,85798

45

5,49185

61

5,93074

14

3,80735

30

4,90689

46

5,52356

62

5,95420

15

3,90689

31

4,95420

47

5,55459

63

5,97728

16

4

32

5

48

5,58496

64

6


N=2I formulasiga ko‘ra bitlarga nisbatan variantlar sonini hisoblash jadvali

Bitlar soni

Variantlar soni (2I)

Bitlar soni

Variantlar soni (2I)

1

2

9

512

2

4

10

1024

3

8

11

2048

4

16

12

4096

5

32

13

8192

6

64

14

16384

7

128

15

32768

8

256

16

65536


Ishning borish tartibi: 1-masala. ASCII kodlash tizimida 28800 bit/s tezlikga ega bo‘lgan modem 30 ta satrli va har bir satrida 60 tadan belgi bo‘lgan 100 betli matnni necha sekundda uzata oladi?

YEchish. ASCII kodlashda har bir belgi 1 bayt, ya’ni 8 bit hajmga ega bo‘ladi. U holda axborot hajmi 100 ∙ 30 ∙ 60 ∙ 8 = 1 440 000 bitga teng bo‘ladi.

Demak axborotni uzatish uchun modemga sekund vaqt kerak bo‘lar ekan.

Download 1.99 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   21




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling