O‘zbekiston respublikasi raqamli texnologiyalar vazirligi muhammad al‑xorazmiy nomidagi


Download 124.7 Kb.
bet12/12
Sana31.01.2024
Hajmi124.7 Kb.
#1831038
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
MO\'K sillabus AX KXI

70-89 ball «yaxshi»
Fanini mustaqil mushohada qilish.
Fan bo‘yicha olgan bilimlarini amalda qo‘llay olish. Mohiyatini tushuntirish.
Bilish, aytib berish. Tasavvurga ega bo‘lish.

60-69 ball «qoniqarli»
Fan mohiyatini tushuntirish.
Bilish, aytib berish.
Fan haqida tasavvurga ega bo‘lish.

0-59 ball «qoniqarsiz»
Fan haqida aniq tasavvurga ega bo‘lmaslik. Bilmaslik.

Reyting baholash turlari

Joriy nazorat

Maksimal ball (20)

O’tkazish vaqti

1-5 ta amaliyot ishlarini hisoblash va hisobot qilish

20

O’quv jarayoni grafigi bo‘yicha

Oraliq nazorat

Maksimal ball (20)

O’tkazish vaqti

oraliq nazorat yozma ish, test (ma’ruza mashg‘ulot o‘qituvchisi tomonidan qabul qilinadi).

20

O’quv jarayoni grafigi bo‘yicha

Mustaqil ish

10

Yakuniy nazorat

50

Semestr davomida

Fan bo‘yicha jami

100




Asosiy va qo‘shimcha o‘quv adabiyotlar hamda axborot manbalari.



Asosiy adabiyotlar


Aurelian Geron, Hands on Machine Learning with Scikit-Learn Keras&Tensorflow // Second edition Concepts, Tools, and Techniques to Build Intelligent Systems, 2019, 510 pages


Oliver Theobald, “Machine Learning for Absolute Beginners”, second edition, 2017, 128 pages


Жуков Л.А., Решетникова Н.В. Приложения нейронных сетей: Учебное пособие для студентов, учащихся лицея и ЗПШНИ / Л. А. Жуков, Н. В. Решетникова. Красноярск: ИПЦ КГТУ, 2007. 154 с.


Галушкин А. И. Нейронные сети: основы теории. – М.: Горячая линия–. Телеком, 2012. – 496 с.: ил. ISBN 978-5-9912-0082-0

Tavsiya qilinadigan qo‘shimcha adabiyotlar


Tanqidiy tahlil, Qat’iy tartib-intizom va shaxsiy javobgarlik-har bir rahbar faoliyatining kundalik qoidasi bo‘lishi kerak. Sh.M.Mirziyoyev, O‘zbekiston, varaq 104, 2017. 5000 s.


2017-2022 Harakatlar strategiyasi. Sh.M.Mirziyoyev, Adolat, varaq 112, 2017. 4000 s.


Heidelberg, S. B. (2005). Introduction to Machine Learning Using Neural Nets. Retrieved on 9/02/2015 from http://link.springer.com/chapter/10.1007/3-540-27335-2_7


Heskes, Tom and Barber, David. (2014). Neural Networks. Retrieved from http://www.eolss.net/Eolss-sampleAllChapter.aspx


Mano, C. (2014). Definition of neural network. Retrieved on June, 2014 from http://www.ehow.com/print/about_5585309_definition-neural-etworks.html


Mano, C. (2014). Examples of artificial neural network. Retrieved on June, 2014 from http://www.ehow.com/print/about_5585309_definition-neural-networks.html


Mujeeb, R. (2012). Introduction to artificial neural network and machine learning. Palakkad: Government engineering college, sreekrishnapuram.


Sundal, M. K. et al. (2014). Introduction. Retrieved on 20th Nov., 2014 from http://nptel.ac.in/courses/102106023/


Stanford course CS231n on “Convolutional Neural Networks for Visual Recognition”


Heidelberg, S. B. (2005). Introduction to Machine Learning Using Neural Nets. Retrieved on 9/02/2015 from http://link.springer.com/chapter/10.1007/3-540-27335-2_7


М. Тим Джонс Программирование искусственного интеллекта в приложениях // Пер. с англ. Осипов А. И. — М.: ДМК Пресс, 2006. — 312

Elektron manbalar:


https://en.wikipedia.org/wiki/Artificial_intelligence.


https://icenamor.github.io/files/books/Hands-on-Machine-Learning-with-Scikit-2E.pdf


http://cs231n.stanford.edu/


https://www.sciencedaily.com/news/computers_math/artificial_intelligence


https://en.wikipedia.org/wiki/Artificial_neural_network


http://neuralnetworksanddeeplearning.com/;

Download 124.7 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling