O‘zmu xabarlari Вестник нууз acta nuuz filologiya 1/4/1 2023 245
Download 1,27 Mb. Pdf ko'rish
|
12-88-PB
TextBlob frameworkidan foydalanishning afzallik va kamchiliklari [12-13]: Afzalliklari Kamchiliklari +1) Foydalanish oson -1) Sekin ishlaydi +2) NLTK uchun qulay interfeys -2) Neyro-tarmoq modeli yoʻq +3) Tarjima qilish va nutqni tushunishni taʻminlaydi -3) Integratsiyalashgan soʻz vektorlari yoʻq Xulosa. Ma’lum boʻlganidek, NLP – bu raqamli texnologiyalar uchun matnni qulay va foydali usulda tahlil qilish , tushunish va inson tilidan ma’no olish jarayonidir. Tabiiy tilni qayta ishlash natijasida (NLPdan foydalanib), aynan Python dasturlash tilining yuqorida imkoniyatlari koʻrsatib oʻtilgan uning kutubxonalari yordamida, avtomatik referatlash, kompyuter tarjimasi, nomlangan obyektni aniqlash, nutq sintezatorini yaratish, tuygʻularni tahlil qilish, nutqni tanish va matnlar segmentatsiyasi, soʻz turkumlarini teglash, matnni tahlil qilish: tokenizatsiya, stemming, lemmatizatsiya, parsing [2] kabi vazifalarni bajarish uchun kompyuter dastuarlari va tizimlarini yaratish mumkin. ADABIYOTLAR 1. AbjalovaM.A. Oʻzbek tili milliy korpusida soʻzshaklni leksikografik baza asosida qidiruv imkoniyatlari. // Kompyuter lingvistikasi: muammolar, yechim, istiqbollar/ Respublika ilmiy-texnik konferensiya toʻplami. Elektron nashr /ebook. – Toshkent: ToshDOʻTAU, 23.04.2021. – B.12-17. http://compling.navoiy-uni.uz/index.php/conferences/article/view/12/10 2. Abjalova M. Tahrir va tahlil dasturlarining lingvistik modullari. [Matn]: monografiya / M.A. Abjalova. - Toshkent: Nodirabegim, 2020. – 176 b. 3. Zhou, M., Duan, N., Liu, S., & Shum, H. Y. (2020). Progress in Neural NLP: Modeling, Learning, and Reasoning. In Engineering. https://doi.org/10.1016/j.eng.2019.12.014 4. Kulkarni, A., & Shivananda, A. (2019). Deep Learning for NLP. In Natural Language Processing Recipes. https://doi.org/10.1007/978-1-4842-4267-4_6 5. Garousi, V., Bauer, S., & Felderer, M. (2020). NLP-assisted software testing: A systematic mapping of the literature. In Information and Software Technology. https://doi.org/10.1016/j.infsof.2020.106321 6. Kulkarni, A., & Shivananda, A. (2019). Deep Learning for NLP. In Natural Language Processing Recipes. https://doi.org/10.1007/978-1-4842-4267-4_6 7. Morris, J. X., Yoo, J. Y., & Qi, Y. (2020). TextAttack: Lessons learned in designing Python frameworks for NLP. In arXiv. https://doi.org/10.18653/v1/2020.nlposs-1.18 8. Panchenko, A., Bondarenko, A., Franzek, M., Hagen, M., & Biemann, C. (2018). Categorizing comparative sentences. In arXiv. https://doi.org/10.18653/v1/w19-4516 9. Indig, B., Simonyi, A., & Ligeti-Nagy, N. (2019). What’s wrong, python? - A visual differ and graph library for NlP in python. LREC 2018 - 11th International Conference on Language Resources and Evaluation. 10. Maria Razno. (2019). Machine learning text classification model with NLP approach. Computational Linguistics and Intelligent Systems. 11. Goyal, P., Pandey, S., & Jain, K. (2018). SpaCy. In Deep Learning for Natural Language Processing: Creating Neural Networks with Python. 12. Lorla, S. (2020). TextBlob Documentation. TextBlob. 13. Raj, S. (2019). Natural Language Processing for Chatbots. In Building Chatbots with Python. https://doi.org/10.1007/978- 1-4842-4096-0_2 |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling