Понятие величины и её измерения в начальном курсе математики


Контрольный эксперимент по выявлению сформированности представлений о длине и единицах ее измерения


Download 62.02 Kb.
bet6/6
Sana16.06.2023
Hajmi62.02 Kb.
#1517532
TuriКурсовая
1   2   3   4   5   6
Bog'liq
Курсовая работа Величины и её измерения

2.3 Контрольный эксперимент по выявлению сформированности представлений о длине и единицах ее измерения

Цели:
• проверить сформированность умений по данной теме;


• выяснить устранены ли пробелы в знаниях детей.
В ходе проведения контрольного эксперимента учащимся была предложена самостоятельная работа, состоящая из двух заданий.
Задание №1. Перевод единиц измерения длины одного наименования в единицы измерения длины двух наименований и наоборот.
Задание №2. Измерение отрезков с помощью линейки. Результаты контрольного эксперимента показали улучшения умений учащихся.

Таблица 2.


Умение Всего Умение сформировано Умение не сформировано
Перевод единиц 20 10 10
Измерение линейкой 20 14 6

Учащиеся практически не допускали ошибок. Это говорит о том, что постановка проблемных заданий, упражнения развивающего характера и практическая деятельность учащихся значительно увеличивает качество знаний, помогает детям более осознанно подходить к изучаемому вопросу.


Количество учеников, у которых сформировано умение переводить единицы измерения длины одного наименования в единицы измерения длины двух наименований и наоборот увеличилось в 5 раз.
Количество учеников, у которых сформировано умение измерять отрезки с помощью линейки, увеличилось в 3 раза.
Выводы:
Для более успешного изучения длины на уроках математики в начальных классах, целесообразно использовать развивающие упражнения.
Постановка проблемных заданий и использование развивающих упражнений увеличивает качество знаний у учащихся.

Заключение.
В процессе написания работы была проанализирована психолого- педагогическая и методическая литература по теме «Величины» и их измерения . Изучая основы развивающего обучения, было установлено, что:
в ходе развивающего обучения используются различные упражнения, задачи, вопросы, задания, развивающее обучение имеет свою структуру, а так же способы её организации, подготовка урока при развивающем обучении тоже имеет свою структуру.
Так как развивающее обучение это дидактическая система, то только знания теоретических основ развивающего обучения сможет помочь учителю в его организации. Анализ методической литературы по вопросу использования проблемных ситуаций на уроках математики показал что:
развивающее обучение возможно на уроках математики, применение развивающего обучения возможно при изучении некоторых вопросов курса математики, разработаны развивающие упражнения, используемые на уроках математики, по теме «Длинна отрезка», при обучении возможны индивидуальная, коллективная и групповая формы работы учащихся. Было установлено, что изучение темы «Длинна отрезка» в начальных классах возможно с использованием развивающих упражнений. Была выдвинута гипотеза:
Учебная деятельность по изучению тем: «Длина отрезка» и «Единицы измерения длины» организованная с помощью развивающего обучения, обеспечивает высокое качество знаний и умений учащихся. Для подтверждения данной гипотезы было организовано экспериментальное обучение младших школьников. Была подобрана и составлена система упражнений развивающего характера.
Для контроля за ходом исследования была проведена проверочная работа. Содержание работы было подобрано в соответствии с программными требованиями по данному вопросу курса математики. Результат проверочной работы показал, что важнейшие умения по теме: «Длинна отрезка» сформированы у большинства учащихся экспериментального класса. Причина этого в использовании развивающих упражнений на уроках математики. Кроме того, наблюдая за деятельностью детей, было обнаружено, что дети лучше стали выполнять задания, связанные с анализом, синтезом, сравнением, обобщением. Следовательно, можно сделать вывод, что использование развивающих упражнений и заданий при изучении темы: «Длинна отрезка» повышают качество знаний учащихся, способствуют развитию умственных действий школьников.
Таким образом, гипотеза, выдвинутая в начале работы, в основном подтвердилась.
Результаты показали перспективность выполнения работы и использовании на практике.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Анипченко З.А.

Задачи, связанные с величинами и их применение в курсе математики в начальных классах. М.: 1997г. стр.2-5

  1. Александров А.Д.

Основания геометрии. Изд. «НАУКА» Новосибирск,1987г.

  1. Вапняр Н.Ф., Пышкало А.М., Янковская Н.А.

Тетрадь по математике для 1-го класса 1-3,7-е изд.-М.:ПРОСВЕЩЕНИЕ,1983г. стр.17

  1. Волкова С.И.

« Карточки с математическими заданиями и играми» для 2-го класса 1-4: Пособие для учителей-М.: ПРОСВЕЩЕНИЕ,1990г. стр. 32-36
5.Глазырина М.М.
Автореферат диссертации на соискание учёной степени к.п.н.Москва,1994г.
6.Зимняя И.А.
«Педагогическая психология» : Учебное пособие.Ростов:изд. «Феникс», 1997г.
7. Истомина Н.Б.
Методика обучения математике в начальных классах.ЛИНКА-ПРЕСС, Ярославль, 1997г. стр.53,141
8. Крутецкий В.А.
Основы педагогической психологии.,М.,1972г. стр. 90-106
9. Моро М.И., Бантова М.А., БельтюковаГ.Б.
М:ПРОСВЕЩЕНИЕ,1989г. (1-4)2 класс.стр.165
10. Моро М.И., Вапняр Н.Ф.
«Карточки с математическими заданиями и играми» для 2-го класса 1-4: Пособие для учителей 2-е изд.-М.:ПРСВЕЩЕНИЕ,1990г. стр. 17,101
11.Моро М.И., Степанова С.В.
Математика :2 класс. Учебник для четырёхлетней начальной школы 3-е изд. М.: ПРОСВЕЩЕНИЕ,1988г.стр.12
12. Петерсон Л.Г. Математика, 1 класс, часть 1,2,3,4:Учебник для 1-го класса. «Баласс», «С-инфо»,1996г.
13. Петерсон Л.Г. Математика, 2 класс, часть 1,2,3,4:Учебник для 2-го класса. «Баласс»,»С-инфо»,1996г.
14. Петерсон Л.Г. Математика,3 класс, часть 1,2,3,4:Учебник для 3-го класса. «Баласс», «С-инфо»,1996г.
15. Рубенштейн С.Л.
«Проблемы общей психологии»,М.:ПРСВЕЩЕНИЕ,1973г. стр. 15, 27,50
16. Степанова С.В.
Тема «Величины» в курсе математики для 2-го класса.Ж.Начальная школа 08.1989г. стр. 80
17. Смирнов С.И. и другие.
Педагогика: педагогические теории, системы , технологии.Учебное пособие.М.:изд.Дом «АКАДЕМИЯ»,1998г. стр.309
18. Стойлова Л.П., Пышкало А.М.
Основы начального курса математики: М.,ПРОСВЕЩЕНИЕ,1988г. стр.302,439,442.
Download 62.02 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling