Power Plant Engineering
Download 3.45 Mb. Pdf ko'rish
|
Power-Plant-Engineering
- Bu sahifa navigatsiya:
- 12.3.3 WINDINGS
- 1. Cylindrical concentric helix.
Fig. 12.16. Single Phase Shell Type transformer in
Course of Assembly. Fig. 12.17. Five-Limbed Core. ELECTRICAL SYSTEM 397 Core sections Joint Fig. 12.18. Small Cores for Grain-Oriented Steel. 3. Constructional Framework. Considerable use is made of channel and angle section rolled steel in the framework of core- type transformers. A typical construction is to clamp the top and bottom yokes between channel sections, held firmly by tie-bolts. The bottom pair of channels has cross channels as feet. The upper pair carries clamps for the high and low-voltage connections. 12.3.3 WINDINGS In addition to the classification as circular or rect. angular, transformer coils can be either concentric or sandwiched. The terms are almost self-explanatory. In Fig. 12.19(a) a single-phase core-type transformer with cylindrical coils is shown (a very common arrangement), and in Fig. 12.19 (b) a single-phase shell-type with sand- wich coils. The latter are used almost invariably with shell-type transformers. In Fig. 12.19 the letters L and H refer to the low and high-voltage windings respectively. On account of the easier insula-tion facilities, the low-voltage winding is placed nearer to the core in the case of core-typo and on the outside positions in the case of shell-type transformers. The insulation spaces between low- and high-voltage coils also serve to facilitate cooling. 1. Cylindrical concentric helix. Cylindrical concentric helix windings, commonly employed for core-type transformers, can often be built up (generally with axial spacing strips to improve oil circulation between the coil and the tube) on bakelite tubes, which facilitate erection, and form a strong foundation for winding the coils. Wherever possible, simple helical coils are used, preferably in a single layer. Usually the voltage of the low-voltage side is sufficiently small to permit of this, and frequently a helical winding in one or two layers can be used for the high-voltage winding. Where this is not suitable, the coil must be sectionalized in order to reduce the voltage between layers. In this way it becomes unnecessary to put insulation between successive layers over and above that on the wires themselves. With a sec-tionalized winding the voltage per section is of the order 1000 V or leas, but it is possible to reach 5000 to 6000 V. per coil, unsection-alized. The chief difficulty in the making of large concentric coils is the handling of several hundred pounds of copper in a single coil. Care has to be taken to wind the coils tightly and to keep them perfectly circular. For insulation between high- and low-voltage windings bakelite or elephantide tubes may be used. They can be stressed up to about 20 kV per cm. radially, the oil in the duct being regarded as an additional margin. Download 3.45 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling