Power Plant Engineering
Download 3.45 Mb. Pdf ko'rish
|
Power-Plant-Engineering
2.15.2 AEROFOIL DESIGN
A wind turbine changes the kinetic energy of the wind into rotary motion (or torque) that can do work. It could power a water pump, or turn a generator. ‘Swept area’ Blade length, b, metres P (watts) = 0.6 b V π 3 2 Fig. 2.5 Winds are the motion of air caused by uneven heating of the earth’s surface by the sun and rotation of the earth. There is a direct relationship between the swept area of the turbine blades and the turbine’s power output (see above). The estimated total power capacity of the winds passing over the land is about 1e 15 W. But the total exploitable wind power is only 2e 13 W. The theoretical wind power can be estimated as: Power density = 0.6 k. ρ .v 3 = 0.6 π b 2 v 3 where; k = Energy pattern factor (depends on type of wind) ρ = Wind density v = The average wind velocity. Of the theoretical quantity energy that can be extracted from the wind, large commercial wind turbines are unlikely to get more than 25% of this. Small and less high-tech. designs might only get 15%. But the effect of this equation is that if the wind speed doubles, the power output increases eight- fold. So small increases in wind velocity can create large increases in power output. The large amounts of energy that are produced at very high wind speeds means that most wind turbines have a pre-designed maximum power output to prevent the machinery ripping itself apart. Large wind turbines rated 150 kW and above are very complex machines. All wind turbines must ‘feather’ the blades turning then slightly out of the wind as wind speed increases in order to prevent the turbine running away. If this didn’t happen, the centripetal force could rip the blades off. But large turbines also have complex automatic gearboxes that keep the generator turning at the optimum speed for power generation. Rarely does the wind blow constantly. This means that the rated output of the turbine will never be achieved as a constant output. On average turbines produce about 30% of their rated capacity as continuous power. So, to compare wind turbines to continuous power sources, you have to multiply the continuous capacity by 3.33 to get the amount of wind turbine capacity required to produce the same power output. For example, a 1,000 mW coal-fired power station would require 3,333 mW of wind capacity to provide the same average power output. As yet there is no efficient form of large scale power storage that would allow the variations in wind turbine output to be evened out NON-CONVENTIONAL ENERGY RESOURCES AND UTILISATION 61 over time. Reversible hydrogen fuel cells may be an option in the future — they can produce hydrogen to store energy, and then use the hydrogen to produce power at other times when the wind turbine output is low. The larger the wind turbine, the higher the tower that supports the blades must be. This isn’t just to keep the blades a safe distance off the ground. The higher you go from ground level, the faster and more uniform the wind so you get more power. So, as the power output of turbines increases, so does their size. The only restriction on the size of a wind turbine is the strength of the materials from which it is built. This is a serious engineering problem because whilst the turbine must be light enough to turn in a light breeze, the structure must be strong enough to withstand storm force winds. Download 3.45 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling