Power Plant Engineering
Download 3.45 Mb. Pdf ko'rish
|
Power-Plant-Engineering
- Bu sahifa navigatsiya:
- 2.16.1 SOLAR RADIATIONS
Fig. 2.11. Direct and Diffuse Solar Radiation.
Sun is the source of many forms of energy available to us. Do you know how energy is obtained from the sun? The most abundant element in sun is hydrogen. It is in a plasma state. This hydrogen at high temperature, high pressure and high density undergoes nuclear fusion and hence releases an enor- NON-CONVENTIONAL ENERGY RESOURCES AND UTILISATION 67 mous amount of energy. This energy is emitted as radiations of different forms in the electromagnetic spectrum. Out of these X-rays, gamma rays and most of ultraviolet rays do not pass through the earth's atmosphere. But heat energy and light energy are the main radiations that reach the earth. This energy is the basis for the existence of life on earth. Sun is a sphere of intensely hot gaseous matter with a diameter of 1.39e 9 m and 1.5e 11 m away from earth. Sun has an effective black body temperature of 5762 K and has a temperature of 8e 6 K to 40e 6 K. The sun is a continuous fusion reactor in which hydrogen (4 protons) combines to form helium (one He nucleus). The mass of the He nucleus is less than that of the four protons, mass having been lost in the reaction and converted to energy. The energy received from the sun on a unit area perpen- dicular to the direction of propagation of radiation outside atmosphere is called solar constant, and has a value 1353 Wm – 2 . This radiation when received on the earth has a typical value of 1100 Wm – 2 and is variable. The wavelength range is 0.29 to 2.5 micro meters. This energy is typically converted into usual energy form through natural and man-made processes. Natural processes include wind and biomass. Man-made processes include conversion into heat and electricity. 2.16.1 SOLAR RADIATIONS Radiation from sun on entering the earth’s atmosphere gets scattered by the atmospheric gas molecules and dust particles and received on earth from all directions and is called diffuse radiation. The portion of radiation received on earth from sun without change in original quality is called beam or direct radiation. The earth revolves about the sun in an approximately circular path, with the sun located slightly off center of the circle. The earth’s axis of rotation is tilted 23.5 degrees with respect to its pane of revolution about the sun, the position of the earth relative to the sun’s rays at the time of winter solstice when the North Pole is inclined 23.5 degree away from the sun. All points on the earth’s surface north of 66.5 N latitude are in total darkness while all regions within 23.5 degree of the South Pole receive continuous sunlight. At the time of the summer solstice, the situation is reversed. At the time of the two equinoxes, both poles are equidistant from the sun and all points on the earth's surface have 12 hours of daylight and 12 hours of darkness. The sun’s ray passing through the center of the earth lies in the equatorial plane at the time of equinoxes. From vernal equinox to autumnal equinox, the rays lie north of the equatorial plane. From autumnal equinox to vernal equinox, the rays lie south of the equatorial plane. The average direction of the sun’s rays for the entire year lies in the equatorial plane. Accord- ingly to intercept maximum amount of solar energy over the whole year, a solar collector in the north- ern hemisphere should be tilted and face due south. Download 3.45 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling