Power Plant Engineering
POWER PLANTS BASED ON OCEAN ENERGY
Download 3.45 Mb. Pdf ko'rish
|
Power-Plant-Engineering
- Bu sahifa navigatsiya:
- The Open or Claude OTEC Cycle Power Plant.
2.21.1 POWER PLANTS BASED ON OCEAN ENERGY
Ocean thermal energy is used for many applications, including electricity generation. There are three types of electricity conversion systems: closed-cycle, open-cycle, and hybrid. Closed-cycle systems use the ocean’s warm surface water to vaporize a working fluid, which has a low-boiling point, such as ammonia. The vapor expands and turns a turbine. The turbine then activates a generator to produce electricity. Open-cycle systems actually boil the seawater by operating at low pressures. This produces steam that passes through a turbine/generator. Hybrid systems combine both closed-cycle and open-cycle systems. Depending Upon these electricity conversion systems the Ocean power plant can be divided mainly in to two groups. The Open or Claude OTEC Cycle Power Plant. The Frenchman Georges Claude constructed the first OTEC plant in 1929 on the Mantanzas Bay in Cuba. The Claude plant used an open cycle in which seawater itself plays the multiple role of heat source, working fluid, coolant, and heat sink. NON-CONVENTIONAL ENERGY RESOURCES AND UTILISATION 99 Vacuum pump Dissolved gases Warm surface water 1 2 4 Warm-water discharge Evaporator Direct contact condenser Low-pressure steam T 5 7 Cold-water discharge Cold deep water Pump 6 Powerplant 13° C Surface water 27°C Deep water 11°C Fig. 2.44. Flow diagram and schematic of a Claude (open-cycle) OTEC power plant. In the cycle warm surface water at 27°C is admitted into an evaporator in which the pressure is maintained at a value slightly below the saturation pressure corresponding to that water temperature. Water entering the evaporator, there four, finds itself “superheated” at the new pressure. This temporarily superheated water undergoes volume boiling causing that water to partially flash to steam to an equilibrium two-phase condition at the new pressure and temperature. The low pressure in the evaporator is maintained by a vacuum pump that also removes the dissolved noncondensable gases from the evaporator. The evaporator now contains a mixture of water and steam of very low quality at 2. The steam is separated from the water as saturated vapor at 3. The remaining water is saturated at 4 and is discharged as brine back to the ocean. The steam at 3 is, by conventional power plant standards, a very low- pressure, very high specific-volume working fluid (0.0317 bar, 43.40 m 3 /kg, compared to about 160 bar, 0.021 m 3 /kg for modern fossil power plants). It expands in a specially designed turbine that can handle such conditions to 5. Since the turbine exhaust system will be discharged back to the ocean in the open cycle, a direct-contact condenser is used, in which the exhaust at 5 is mixed with cold water from the deep cold-water pipe at 6, which results in a near-saturated water at 7. That water is now discharged to the ocean. The cooling water reaching the condenser at 13°C is obtained from deep water at 11°C (51.8°F). This rise in temperature is caused by heat transfer between the pro-gressively warmer outside water and the cooling water inside the pipe as it ascends the cold water pipe. There are thus three temperature differences, all about 2°C: one between warm surface water and working steam, one between exhaust steam and cooling water, and one between cooling water reaching the condenser and deep water. 'These represent external irreversibility’s that reduce the over- all temperature difference between heat source and sink from 27 – 11 = 16°C (28.8°F) to 25 – 15 = 10°C (18°F) as the temperature difference available for cycle work. It is obvious that because of the very low temperature differences available to produce work, the external differences must be kept to absolute minimum to realize as high efficiency as possible. Such a necessary approach, unfortunately, 100 POWER PLANT ENGINEERING also results in very large warm and cold water flows and hence pumping power, as well as large heavy cold water pipes. Download 3.45 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling