Представлена в редакцию
Download 1.31 Mb. Pdf ko'rish
|
raspoznavanie-botov-v-onlaynovyh-sotsialnyh-setyah-pri-pomoschi-algoritma-sluchaynyy-les
Список литературы
1. De Meo P., Ferrara E., Fiumara G., A. Provetti A. On Facebook, most ties are weak // Commu- nications of the ACM. 2014. Vol. 57. No. 11. Pp. 78-84. DOI: 10.1145/2629438 2. Tsagkias M., de Rijke M., Weerkamp W. Linking online news and social media // 4 th ACM in- tern. conf. on Web search and data mining: WSDM’11 (Hong Kong, China, February 9-12, 2011): Proc. N.Y.: ACM, 2011. Pp. 565-574. DOI: 10.1145/1935826.1935906 3. Губанов Д.А., Новиков Д.А., Чхартишвили А.Г. Социальные сети: модели информацион- ного влияния, управления и противоборства. М.: Физматлит, 2010. 225 с. 4. Шушков Г.М., Сергеев И.В. Концептуальные основы информационной безопасности Рос- сийской Федерации // Актуальные вопросы научной и научно-педагогической деятельно- сти молодых ученых: III Всеросс. заочная науч.-практич. конф. (Москва, Россия, 23 нояб- ря – 30 декабря 2015 г.): Сб. науч. тр. М., 2016. С. 69-76. 5. Лыфенко Н.Д. Виртуальные пользователи в социальных сетях: мифы и реальность // Во- просы кибербезопасности. 2014. № 5(8). С. 17-20. 6. Ferrara E., Varol O., Davis C., Menczer F., Flammini A. The rise of social bots // Communica- tions of the ACM. 2016. Vol. 59. No. 7. Pp. 96-104. DOI: 10.1145/2818717 7. Ratkiewicz J., Conover M.D., Meiss M.R., Gonçalves B., Flammini A., Menczer F. Detecting and tracking political abuse in social media // 5 th intern. AAAI conf. on weblogs and social me- dia: ICWSM’11 (Barcelona, Spain, July 17-21, 2011): Proc. Palo Alto, CA: AAAI Press, 2011. Pp. 297-304. 8. Ferrara E. Manipulation and abuse on social media // ACM SIGWEB Newsletter. 2015. Article no. 4. DOI: 10.1145/2749279.2749283 Машиностроение и компьютерные технологии 36 9. Wang A.H. Detecting spam bots in online social networking sites: A machine learning approach // Data and application security and privacy XXIV: 24 th Annual IFIP conf. on data and applica- tions security and privacy: DBSec 2010 (Rome, Italy, June 21-23, 2010): Proc. B.; HDBL.: Springer, 2010. Pp. 335-342. DOI: 10.1007/978-3-642-13739-6_25 10. Faraz Ahmed, Muhammad Abulaish. A generic statistical approach for spam detection in online social networks // Computer Communications. 2013. Vol. 36. No. 10-11. Pp. 1120-1129. DOI: 10.1016/j.comcom.2013.04.004 11. Zi Chu, Indra Widjaja, Haining Wang. Detecting social spam campaigns on Twitter // Applied cryptography and network security: 10 th intern. conf. on applied cryptography and network secu- rity: ACNS'12 (Singapore, Singapore, June 26-29, 2012): Proc. B.; Hdbl.: Springer, 2012. Pp. 455-472. DOI: 10.1007/978-3-642-31284-7_27 12. Haewoon Kwak, Changhyun Lee, Hosung Park, Sue Moon. What is Twitter, a social network or a news media? // 19 th intern. conf. on World Wide Web: WWW’10 (Raleigh, NC, USA, April 26-30, 2010): Proc. N.Y.: ACM, 2010. Pp. 591-600. DOI: 10.1145/1772690.1772751 13. Liaw A., Wiener M. Classification and regression by randomForest // R News. 2002. Vol. 2. No. 3. Pp. 18-22. 14. Biau G., Scornet E. A random forest guided tour // TEST. 2016. Vol. 25. No. 2. Pp. 197-227. DOI: 10.1007/s11749-016-0481-7 15. Classification and regression trees / L. Breiman a.o. Belmont, CA: Wadsworth Intern. Group, 1984. 358 p. 16. Safavian S., Landgrebe D. A survey of decision tree classifier methodology // IEEE Trans. on Systems, Man and Cybernetics. 1991. Vol. 21. No. 3. Pp. 660-674. DOI: 10.1109/21.97458 17. Raileanu L.E., Stoffel K. Theoretical comparison between the Gini Index and Information Gain Criteria // Annals of Mathematics and Artificial Intelligence. 2004. Vol. 41. No. 1. Pp. 77-93. DOI: 10.1023/B:AMAI.0000018580.96245.c6 18. Cresci S., Di Pietro R., Petrocchi M., Spognardi A., Tesconi M. The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race // 26 th intern. conf. on World Wide Web Companion: WWW’17 Companion (Perth, Australia, April 3-7, 2017): Proc. N.Y.: ACM, 2017. Pp. 963-972. DOI: 10.1145/3041021.3055135 19. Chao Yang, Harkreader R., Guofei Gu. Empirical evaluation and new design for fighting evolv- ing Twitter spammers // IEEE Trans. on Information Forensics and Security. 2013. Vol. 8. No. 8. Pp. 1280-1293. DOI: 10.1109/TIFS.2013.2267732 20. Raschka S. Model evaluation, model selection, and algorithm selection in machine learning / Univ. of Wisconsin–Madison; Dep. of Statistics. 2018. Режим доступа: https://sebastianraschka.com/pdf/manuscripts/model-eval.pdf (дата обращения 13.04.2019). 21. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selec- tion //14 th Intern. joint conf. on artificial intelligence: IJCAI’95 (Montreal, Canada, August 20- 25, 1995): Proc. N.Y.: ACM, 1995. Vol. 2. Pp. 1137–1143. Машиностроение и компьютерные технологии 37 22. Hossin M., Sulaiman M.N. A review on evaluation metrics for data classification evaluations // Intern. J. of Data Mining & Knowledge Management Process (IJDKP). 2015. Vol. 5. No. 2. Pp. 1-11. DOI: 10.5121/ijdkp.2015.5201 23. Caelen O. A Bayesian interpretation of the confusion matrix // Annals of Mathematics and Arti- ficial Intelligence. 2017. Vol. 81. No. 3-4. Pp. 429-450. DOI: 10.1007/s10472-017-9564-8 24. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A.,. Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine learning in Python // The J. of Machine Learning Research. 2011. Vol. 12. Pp. 2825-2830. 25. Davis C.A., Varol O., Ferrara E., Flammini A., Menczer F. BotOrNot: A system to evaluate so- cial bots // 25 th intern. conf. companion on World Wide Web: WWW’16 (Montreal, Canada, April 11-15, 2016): Proc. N.Y.: ACM, 2016. Pp. 273-274. DOI: 10.1145/2872518.2889302 26. Miller Z., Dickinson B., Deitrick W., Wei Hu, Alex Hai Wang. Twitter spammer detection using data stream clustering // J. Information Sciences – Informatics and Computer Science, Intelli- gent Systems, Applications. 2014. Vol. 260. Pp. 64-73. DOI: 10.1016/j.ins.2013.11.016 27. Cresci S., Di Pietro R., Petrocchi M., Spognardi A., Tesconi M. DNA-inspired online behavioral modeling and its application to spambot detection // IEEE Intelligent Systems. 2016. Vol. 31. No. 5. Pp. 58-64. DOI: 10.1109/MIS.2016.29 Mechanical Engineering and Computer Science 38 Mechanical Engineering and Computer Science, 2019, no. 04, pp. 24–41. DOI: 10.24108/0419.0001473 Received: 19.03.2019 © NP “NEICON” Download 1.31 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling