Procedia Engineering 193 ( 2017 ) 35 41


Download 185.97 Kb.
Pdf ko'rish
bet5/5
Sana14.11.2021
Hajmi185.97 Kb.
#174621
1   2   3   4   5
Bog'liq
Evaluation of Concrete Resistance to Freeze-thaw B

4. Conclusions 

The paper proposes the concrete freeze-thaw resistance evaluation procedure based on the modification of the 

method set forth in PN-88/B-06250. The basic procedure in freeze-thaw resistance evaluation is measuring changes 

in mass of the specimens during freeze-thaw cycles, with the mass gain assumed to be a result of micro-cracks 

forming in the structure of concrete. It is possible to determine the number of freeze-thaw cycles needed for the 

critical damage to occur, corresponding to the strength decrease, 

ǻR=20%. The paper assumes that for ǻR=20%, the 



41

 Jerzy  Wawrzeńczyk and Agnieszka Molendowska  /  Procedia Engineering   193  ( 2017 )  35 – 41 

critical mass increase 

ǻm is about 10 g. The authors consider this approach to be better than that provided in the 

standard, because it allows including the scattering of the results in addition to the mean values.  

The number of freeze-thaw cycles needed to reach the critical mass gain in the specimens is used to determine the 

parameters of the Weibull distribution and to develop a damage model for the concrete under freezing. For the 

adopted probability, it is thus possible to determine how many freeze-thaw cycles the concrete is able to withstand 

until the critical saturation is reached. The paper includes examples of the analysis performed for two concretes. 



References 

[1]  C. Korhonen, Effect of high doses of chemical admixtures on the freeze-thaw durability of portland cement concrete, US Army Corps of 

Engineers, Technical Report ERDC/CRREL TR-025, 2002.  

[2]  J. Walraven, Design for service life: how should it be implemented in future codes, International Conference on Concrete Repair, 

Rehabilitation and Retrofitting. Proceedings ICCRRR, Cape Town, 2008, pp. 3–10. 

[3]  M. G. Richardson, C. McNally, M. O'Connell, Equivalent concrete performance concept: Durability studies of limestone cement/GGBS 

concretes, 3 International Conference on the Durability Structures, Queen's University Belfast, 2012.  

[4]  A. Duan, Y. Tian, J-G. Dai, W-L. Jin, A stochastic damage model for evaluating the internal deterioration of concrete due to freeze-thaw 

action, Materials and Structures. 47 (2014) 1025-1039. 

[5]  P. Qiao, F. Chen F, Cohesive and probabilistic damage analysis of freezing-thawing degradation of concrete, Construction and Building 

Materials. 47 (2013) 879-887. 

[6]  M. J. Setzer, Action of frost and deicing chemical – basic phenomena and testing. Freeze-thaw durability of concrete. Edited by J. 

Marchand, M. Pigeon and M. Setzer, E&SPON, London, 1997, pp. 3–22. 

[7] J. 


Wawrze

Ĕczyk, Diagnostyka mrozoodpornoĞci betonu cementowego, Monografia M32, Politechnika ĝwiĊtokrzyska, Kielce, 2002. 

[8]  S. Jakobsen, E. Sellevold, S. Matala, Frost durability of high strength concrete: effect of internal cracking on ice formation, Cement and 

Concrete Research. 26(6) (1996) 919-931. 

[9]  S. Jakobsen, E. Sellevold, D. Sather, Frost testing high strength concrete: frost/salt scaling at different cooling rates, Materials and 

Structures. 30(195) (1997) 33-42. 

[10] K. Flaga, O mrozoodporno

Ğci betonów mostowych, InĪynieria i Budownictwo. 7-8 (2013) 416-421. 

[11] J. Wawrze

Ĕczyk, A. Káak, A. Molendowska, Ocena stopnia uszkodzenia wewnĊtrznego w betonie cyklicznie zamraĪanym, Building Physics 

in Theory and Practice, 

àódĨ 2013. 

[12] PN-88/B-06250 Beton Zwyk

áy/Normal Concrete (in Polish). 

[13] STATISTICA 8.0 PL, StatSoft Polska. 

 

 



 

Download 185.97 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling