Процесс флотация


Download 179.63 Kb.
bet5/5
Sana28.12.2022
Hajmi179.63 Kb.
#1021332
1   2   3   4   5
Bog'liq
ИЗУЧЕНИЯ ПРОЦЕССА ОБОГАЩЕНИЯ РУД ФЛОТАЦИОННЫМ МЕТОДОМ

2.3 Модификаторы флотации

Применение депрессоров является основным средством получения максимальной селективности при флотационном разделении минералов с близкими свойствами.


Депрессоры. Депрессия заключается в предотвращении флотации одного или нескольких минералов и может быть осуществлена различными путями в зависимости от типа депрессора.
Существует несколько способов подавления флотации минералов:
- повышение гидратации поверхности может быть достигнуто обработкой ее реагентами, образующими малорастворимые гидрофильные соединения;
- предотвращение активации солями тяжелых и щелочноземельных металлов достигается в результате связывания катионов в малорастворимые и комплексные соединения, гидроксиды, карбонаты, фосфаты и другие соединения на поверхности;
- защита поверхности минерала от действия собирателей; разрушение пленки собирателя на минеральной поверхности может быть достигнуто термическим и химическим путем (пропаркой или переводом поверхностных соединений в более растворимые соединения);
- растворение активирующей пленки (например, цианид дезактивирует поверхность сфалетита от ионов меди).
Депрессоры, при меняемые при флотации, действуют специфично на определенный минерал или группу минералов. Особенно большое влияние на действие депрессоров оказывает рН и тип собирателей. Широкое применение в практике флотации нашли известь, сернистый натрий, цианиды, цинковый купорос, жидкое стекло, хромпик и т.п.
Известь является хорошим депрессором пирита, пирротина и никеленосных минералов (пентландита, пирротина). Депрессирующее действие извести связано с окислением сульфидов кислородом и образованием труднорастворимых гидроксидов металлов, которые делают поверхность минералов хорошо смачиваемой водой, т. е. способной к гидрофилизации. Подавление флотации минералов ионами гидроксила заключается как в десорбции ксантогената с их поверхности, так и в усилении гидратации этих минералов. Кроме того, на поверхности пирита могут сорбироваться ионы кальция с образованием гипса CaSО4 и Са(ОН)2.
Известь подается в процесс в виде известкового молока Са(ОН)2, которое частично (растворимость всего 0,165 %) диссоциирует на ионы кальция и гидроксила
Са(ОН)2  Са2+ + 2OН-

На поверхности пирита под действием кислорода и ионов гидроксила происходит окисление S2- и Fe2+; образующиеся. гидроксиды железа (II, III), хорошо смачиваются водой


FeS2 + О2 + OН  Fe(OH)2 + SO42-


Железо с гидроксилом образует более прочное и гидрофильное соединение, чем с ксантогенатом., вследствие чего наступает депрессия пирита. На такую гидрофильную поверхность из флотационной пульпы налипают тонкодисперсные осадки нерастворимого Са(ОН)2 и образовавшегося гипса CaSО4.


Сернистый 1lampuu (сульфид натрия) Na2S получают в промышленности восстановлением сульфата натрия коксом при нагревании до 1200 ОС .

Na24 +2С = Na2S +2СО2


Полученный сплав выщелачивают. Плавленый сернистый натрий содержит 68 % Na2S.


Механизм депрессирующего действия сульфида натрия заключается либо в предотвращении адсорбции собирателя, либо в десорбции уже закрепившегося собирателя благодаря появлению в пульпе свободных гидросернистых ионов HS- при рН < 10, сульфид-ионов S2- при рН > 10 в результате гидролиза

Na2S + Н2О H2S + NaOH


Н2S  Н++НS-


HS-  Н+S2-

Ионы HS- и S2- вытесняют ион ксантогената с поверхности минерала, так как растворимость сульфидов тяжелых металлов значительно меньше растворимости ксантогенатов этих металлов. Идет реакция с образованием более труднорастворимого соединения, вследствие чего ион ксантогената десорбируется. Кроме того, сернистый натрий восстанавливает диксантогенид до ксантогената, а для флотации важна как химическая, так и физическая форма сорбции.


Сернистый натрий депрессирует сульфиды всех тяжелых металлов, но при различных концентрациях.
При селективной флотации свинцово-цинковых, медноцинковых и медно-свинцово-цинковых руд в качестве депрессоров применяю соединения оксидов серы, которые называются сульфоксидными. К ним относятся сернистая кислота H24, сернистый газ, сульфиты Nа23 и тиосульфаты Nа2S2О3 щелочных металлов.
Сернистая кислота и ее соли применяются совместно с железным купоросом FeSО4*5 H2О) для депрессии галенита при разделении медно-свинцовых концентратов.
Сульфит или гипосульфит натрия совместно с сернистым натрием или цинковым купоросом ZnSО4* 7Н2О являются депрессорами цинковой обманки.
Цианиды - соли синильной кислоты, которые подавляют флотацию сульфидов цинка, железа, никеля, кадмия, а при повышенных расходах депрессируют халькопирит. Вторичные сульфиды меди депрессируются плохо, так как легко растворяются в цианистых раствоpax в присутствии кислорода воздуха. Применение, находят цианистый натрий и цианистый калий. Щелочные цианиды хорошо растворяются в воде, они гидролизуются в водных растворах с выделением цианистого водорода, являющегося сильнейшим ядом
NaCN + Н2О NaOH + HCN

Поэтому применение цианидов возможно только в щелочной среде, в которой они не подвергаются гидролизу.


Использование цианидов имеет много недостатков: высокие токсичность и стоимость, а также способность растворять золото. Однако попытки заменить цианид другими нетоксичными депрессорами не дают такого эффекта, который достигается при использовании цианидов.
Механизм депрессирующего действия цианидов при флотации сульфидов тяжелых металлов состоит в разрушении образующегося поверхности минералов химического соединения (ксантогената металла) или в предварительном образовании на поверхности минерала комплексного цианистого иона, предотвращающего адсорбцию ксантогената.
По степени воздействия цианидов на металлы их можно разделить на три группы.
В первую группу входят минералы, металлы которых (Рb, Bi, Sb, Sn, As) не образуют с цианидом труднорастворимых цианистых комплексов, а ксантогенаты этих металлов не реагируют с цианидами, т. е. не растворяются в цианистых растворах.
Во вторую группу входят минералы, содержащие Pt, Hg, Аu и Сu, которые образуют с цианидом сложные комплексные соединения при избытке циан-ионов Hg(CN)42-, Cu(CN)2-.
На минералы этой группы цианиды оказывают депрессирующее действие, но при повышенном расходе. Ксантогенаты этих металлов слабо растворяются в цианистых растворах.
В третью группу входят минералы, содержащие Zn, Ni, Ag, Fe, которые очень чувствительны к депрессирующему действию цианидов. Ксантогенаты этих металлов хорошо растворяются в цианистых растворах. Например,
О2
(ROCS2)2FeII +6CN- = FeIII(CN)63-- +2ROCS2-

Используя такую классификацию, можно определить возможность селективного разделения минералов цианидами.


Цинковый купорос ZnSО4*7Н2О применяется для депрессии цинковой обманки и пирита в сочетании с цианидом, сернистым натрием или содой.
Механизм депрессирующего действия цианида с цинковым купоросом объясняется либо образованием труднорастворимого цианида цинка Zn(CN)2, либо при избытке цианида - растворимого комплекса Zn(СN)42- :

NaCN +ZnSО4  Zn(CN)2 + Na24,


Zn(CN)2 + изб. NaCN  Na2[Zn(CN)4]


В щелочной среде цианид цинка разрушается с выделением циан-иона




Zn(CN)2 2CN- + Zn(ОН)2

Это позволяет поддерживать концентрацию циан-ионов, при которой ионы CN адсорбируются на поверхности сфалерита, предотвращая адсорбцию ксантогената. Кроме того, цианид взаимодействует с активирующими сфалерит катионами меди и, связывая их в комплексные соединения, снижает концентрацию ионов меди в пульпе и на поверхности цинковой обманки до такого уровня, при котором происходит дезактивация поверхности сульфида цинка по реакции:


О2


2CuS + 6СN- = 2[Cu(CN)2]- + 2CN- + 2SО42-
Жидкое стекло (растворимое стекло, силикат натрия, силиикат-глыба) Nа2SiО3, или mNa2О* nSiО2 (отношение m/n называется модулем, n = 2,2...3).Для флотации обычно применяют 5 %-ные эмульсии жидкого стекла. При модуле >3 оно трудно растворимо в воде, образует коллоидные растворы и крупные гели кремневой кислоты. Жидкое стекло с модулем < 2,2 создает сильнощелочную среду и слабо депрессирует силикаты.
При флотации жирнокислотными собирателями жидкое стекло применяется как депрессор кварца, полевых шпатов и других силикатных минералов, а также кальцита, апатита, флюорита.
На поверхности этих минералов образуются гидратированные мицеллы кремневой кислоты. Для повышения избирательности действия жидкого стекла применяется его смесь с солями некоторых металлов: сульфатами меди, железа, алюминия.
Наиболее распространенными депрессорами органического типа являются крахмал, декстрин, танин и карбоксиметилцеллюлоза (КМЦ).
Крахмал C6H10О5 применяется для депрессии графита при флотации сульфидов ксантогенатами. При разделении коллективных медномолибденовых концентратов крахмалом можно задепрессировать молибденит.
Декстрин аналогичен крахмалу, но имеет более простое строение. Он хорошо растворяется в воде, применяется для депрессии сподумена, талька, барита, оксидов железа.
Танин (дубильная кислота) получается из различных растений, применяют для депрессии оксидов железа, кальцита, доломита.
Карбоксиметилцеллюлоза (КМЦ) применяется для депрессии минералов пустой породы.
Активаторы. Используются в том случае, когда минералы депрессированы или когда природная флотируемость самих минералов недостаточна. Активаторы, как и депрессоры действуют на границе раздела твердой и жидкой фаз, способствуя закреплению собирателя на минерале.
Активация может состоять в химической очистке поверхности минералов от депрессирующих пленок. При этом обнажаются участки кристаллической решетки, способные к взаимодействию с собирателем. Например, при окислении пирита на его поверхности образуется пленка оксидов железа, которая предотвращает адсорбцию собирателя. Обработка пирита серной кислотой позволяет растворить эту пленку, и пирит восстанавливает свои флотационные свойства. Щавелевая кислота Н2С2О4 активирует никеленосный пирротин Fe7S8, плавиковая кислота HF - флотацию берилла А12Ве3(Si6О18).
Активация происходит также в результате ионного обмена, например, активация сфалетита катионами меди. Катион цинка с поверхности сфалетита вытесняется ионами меди, добавляемой в виде медного купороса, и на сфалетите образуется пленка сульфида меди CuS, хорошо взаимодействующая с ксантогенатами. Такая обменная реакция имеет вид

ZnS + Сu2+  CuS + Zn2+


При последующем введении в пульпу ксантогената на частично окисленной поверхности образуется ксантогенат меди, произведение растворимости которого, меньше, чем произведение растворимости ксантогената цинка. Если медный Купорос вводится в пульпу после того, как сфалетит был задепрессирован цианидом, то его активирующее действие заключается в связывании этого цианида.


Активировать можно не только сульфидные минералы. С помощью различных солей (кальция, железа, алюминия) можно активировать поверхность кварца при его флотации оксидрильными собирателями. Чистый кварц не флотируется, так как на его поверхности отсутствуют катионы, способные образовывать с жирнокислотными собирателями труднорастворимые соединения.
Некоторые окисленные минералы тяжелых металлов (церуссит РbСО3, малахит СuСО3*Сu(ОН)2, куприт Сu2O и др.) можно активировать сернистым натрием; при этом с их поверхности ионы SО42- или СО32- вытесняются ионами S2- . Такой процесс активации называется сульфидизацией. На поверхности окисленных минералов образуется сульфидная пленка. Ксантогенат взаимодействует с частично окисленными участками поверхности:

РbСО3 + Na2S  PbS + Nа2СО3,


О2


PbS + ROCSSMe  (ROCSS)2Pb

Расход сульфидизатора Na2S должен быть <50...300 г/т. При более высокой концентрации сернистого натрия происходит депрессия минерала.


Регуляторы среды. Кислоты, щелочи и соли, гидролиз которых вызывет кислую или щелочную реакцию раствора, могут быть не только модификаторами флотации (активаторами или депрессорами), но и иметь самостоятельное значение. Они применяются для создания оптимального рН среды. Кроме того, они используются при флотации для регулирования ионного состава жидкой фазы пульпы. Например, сода, сернистый натрий, известь применяются для перевода различных нежелательных катионов, активирующих флотацию депрессируемых минералов или выводящих из процесса собиратель, в нерастворимые осадки.
От величины рН зависит состояние реагентов в растворе, степень гидратированности поверхности минералов. Поэтому регулирование рН пульпы является одним из основных путей повышения селективности процесса флотации. Применение того или другого регулятора среды строго индивидуально для каждого конкретного случая. Например, при флотации полиметаллических руд щелочную среду создают содой Nа2СО3, а не более дешевый известью, так как при высоком расходе известь депрессирует галенит. Расход регуляторов среды при флотации может изменяться в широких пределах и достигать одного или нескольких килограммов на тонну руды.
Download 179.63 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling