Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review


Download 1.62 Mb.
Pdf ko'rish
bet18/26
Sana24.12.2022
Hajmi1.62 Mb.
#1057128
1   ...   14   15   16   17   18   19   20   21   ...   26
Bog'liq
1-s2.0-S014181302201248X-main

Table 5 
Potential functions of polysaccharide-based hydrogels.
Primary objective 
Primary attribute 
Hydrogel constitution 
Reference 
Novelty indicator 
for food 
Produced important 
information 
pertaining to 
products freshness. 
According to 
metabolites 
generation within 
the produce. 
Detecting 
alterations in the 
pH, chemical 
deterioration or 
microbial growth 
Poly (NN-dimethyl 
acrylamideco- 
methacryloyl 
sulfadimethoxine) 
(poly (DMAco-SDM)) 
hydrogels 
incorporated with 
methacryloyl 
sulfadimethoxine 
monomer (SDM) with 
a pH-responsive group 
[164] 
Reliability as well 
as retentiveness 
of volatiles 
compounds 
triglyceride 
(MCT) oil, and 
WPI (Study nano 
emulsions) 
Encapsulation of 
flavors. Regulated 
discharge happens 
by alteration in pH 
(e.g., during 
interaction with 
saliva) 
Flavored 
nanoemulsions 
incorporated in low 
methoxyl (LM) pectin 
and whey protein 
isolate (WPI) at pH 4.0 
Orange oil, medium- 
chain 
[173] 
Bioavailability 
enhancement of 
lipophilic 
substances 
Inclusion of 
lipophilic chemical 
substances (e.g., 
β
-carotene) within 
food array, 
enhancing its 
bioavailability 
Polysaccharide's 
hydrogels (starch and 
xanthan gum) with 
incorporated 
β
-carotene emulsion 
[174] 
Detecting aflatoxin 
B1 by urease 
Detecting aflatoxin 
B1 inside food 
anytime the 
hydrogel triggers 
break down of 
network, and starts 
the discharge of 
urease within the 
examined solution. 
Then, the 
discharged urease 
will catalyze the 
chemical reaction 
of urea and lead to 
an upswing in pH 
level. The 
transformation of 
pH value has a steer 
connection with the 
aflatoxin 
concentration 
DNA hydrogel 
[277,278]
A. Manzoor et al.


International Journal of Biological Macromolecules 213 (2022) 987–1006
1000
are classified as i) diffusion-controlled, ii) swelling-controlled, and iii) 
chemically-controlled release systems based on several reports on po-
tential discharge mechanisms of bioactive components from a hydrogel, 
centered on the rate-limiting step of the discharge phenomena. 
The two main classes of hydrogel delivery systems are i) time- 
controlled systems and ii) stimuli-induced release systems 
[188]

among which stimuli-induced discharge methods are called ‘stimuli- 
sensitive’, ‘stimuli-responsive’, ‘environment-sensitive’, ‘environment- 
responsive’, or ‘responsive’ hydrogel systems. Responsive hydrogel 
systems tend to be created to deliver their content(s) in reaction to 
varying situations such that desirably correlates with all the physio-
logical demands at the proper time as well as an ideal spot 
[189]

Polymeric particles capsules, having dimensions at the micro or nano 
level usually consist of spheres and are highly used in the pharmaceu-
tical field. The microparticles of particle sizes 1 and 1000 
μ
m are used to 
encapsulate bioactive compounds at higher concentrations which are 
perfect to be fed through minimally intrusive treatments or even intra 
nasally (in dry powder) or swallowed 
[181]
. Nanoparticles, such as 
nanocapsules as well as nano-spheres, provide a significant surface area 
as compared to microparticles that assist in maximizing drug stability 
[190]
. Nanoparticles can conveniently target internal organs including 
liver organ, spleen, bronchi, spinal cord, and lymph as they can easily 
infiltrate tissue as well as cell spaces, beneficial for the effective targeted 
delivery methods 
[191]
. In food applications, nanoparticles are not 
behind in delivery systems such as oral delivery of bioactive compounds 
in food products through encapsulation of edible biopolymers 
[192,193]

Hydrogel beads possess the significant potential of encapsulating, 
safeguarding, as well as entrapping nutraceutical ingredients into food. 
Hydrophilic nutraceuticals are mostly blended with a biopolymer solu-
tion, and hydrogel beads are produced, but some sort of alluring inter-
action is essential among the nutraceuticals as well as the biopolymer 
compounds to make sure that the bioactive compounds are held on it. 
Modifications in bead constitution, framework, as well as charge can 
result in variations in their capability to hold, safeguard, as well as 
release nutraceutical ingredients. Hydrogel beads exhibit a significant 
contribution to mitigating the problems restricting the use of 
nutraceuticals in functional foods 
[194]
. PUFAs are extremely prone to 
chemical deterioration due to lipid oxidation, leading to unwanted stale 
off-flavors as well as undesirable chemical reaction products 
[195]
. This 
process is a significant hurdle to food processing operations to integrate 
wellness-promoting 
ω
-3 rich PUFAs within functional food products, e. 
g., seafood, and linseed oils 
[196,197]
. Research has revealed that lipid 
droplets entrapped into caseinate-pectin hydrogels reflected much bet-
ter stability towards oxidation as compared to non-encapsulated lipid 
droplets 
[198,199]
. Salcedo-Sandoval et al. 
[171] 
revealed that the use 
of these hydrogel beads may be explored as a method for enriching meat 
products with PUFAs. 
The carotenoids (β-carotene, lycopene, lutein, astaxanthin, zeax-
anthin) are a selection of strongly hydrophobic compounds which have 
significant prospective as nutraceuticals due to their advantageous 
wellness results, such as free radical cleansing activity, pro-vitamin A 
activity, as well as enhancement of total eye health 
[200]
. However, the 
employment of these types of comparatively long non-polar poly-
unsaturated compounds as nutraceuticals within food products is 
complicated due to their minimal water-solubility, chemical uncer-
tainty, as well as reduced oral bioavailability. Difficulties with minimal 
water-solubility and bioavailability are frequently conquered via 
liquefying the carotenoids in colloid- or nano emulsion-based delivery 
setups. But the carotenoids within these setups remain extremely prone 
to chemical deterioration, particularly when kept below an acidulent 
environment or even at raised temp 
[201–203]
. Previous research 
indicated that the chemical stability of carotenoid-enriched lipid drops 
is enhanced by capturing them inside calcium alginate beads 
[204]

Alginate beads for the delivery systems has also been investigated 
competently by Zhou et al. 
[205] 
and described alginate hydrogel beads 
as potential carriers for egg yolk low density lipoprotein (LDL)/pectin 
nanogels thereby keeping the physicochemical characteristics of 
hydrogel beads intact. Moreover, in gastric conditions, the protection of 
LDL-based nanogels from destabilization was promised significantly. 
Similarly, chitosan-based hydrogel beads are bestowed with the poten-
tial applications in food and agriculture sector besides carrying the de-
livery of bioactive compounds developed with modified and recent 
technologies 
[206]
. One previous research revealed that carotenoid- 

Download 1.62 Mb.

Do'stlaringiz bilan baham:
1   ...   14   15   16   17   18   19   20   21   ...   26




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling