Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review
Download 1.62 Mb. Pdf ko'rish
|
1-s2.0-S014181302201248X-main
A. Manzoor et al.
International Journal of Biological Macromolecules 213 (2022) 987–1006 1005 [178] A.Faridi Esfanjani, S.M. Jafari, Biopolymer nano-particles and natural nano- carriers for nano-encapsulation of phenolic compounds, Colloids Surf. B. 146 (2016) 532–543 . [179] S.M. Jafari, Chapter 1-an overview of nanoencapsulation techniques and their classification, in: Nanoencapsulation Technologies for the Food and Nutraceutical Industries, Academic Press, 2017, pp. 1–34 . [180] S.M. Jafari, Chapter 1-an introduction to nanoencapsulation techniques for the food bioactive ingredients, in: Nanoencapsulation of Food Bioactive Ingredients, Academic Press, 2017, pp. 1–62 . [181] R. Snyders, K.I. Shingel, O. Zabeida, C. Roberge, M.P. Faure, L. Martinu, J. E. Klemberg-Sapieha, Mechanical and microstructural properties of hybrid poly (ethylene glycol)–soy protein hydrogels for wound dressing applications, J. Biomed. Mater. Res. A 83 (1) (2007) 88–97 . [182] A.C. Lima, P. Sher, J.F. Mano, Production methodologies of polymeric and hydrogel particles for drug delivery applications, Expert Opin. Drug Deliv. 9 (2) (2012) 231–248 . [183] S. Mokhtari, S.M. Jafari, E. Assadpour, Development of a nutraceutical nano- delivery system through emulsification/internal gelation of alginate, Food Chem. 229 (2017) 286–295 . [184] C. Vilela, R.J.B. Pinto, S. Pinto, P. Marques, A. Silvestre, C.S.D.R.F. Barros, Polysaccharide Based Hybrid Materials: Metals and Metal Oxides, Graphene and Carbon Nanotubes, Springer, 2018 . [185] P.C. Reddy, K.S.C. Chaitanya, Y.M. Rao, A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods, DARU J. Pharm. Sci. 19 (6) (2011) 385 . [186] L.A. Sharpe, A.M. Daily, S.D. Horava, N.A. Peppas, Therapeutic applications of hydrogels in oral drug delivery, Expert Opin. Drug Deliv. 11 (6) (2014) 901–915 . [187] Z. Zhang, R. Zhang, L. Chen, Q. Tong, D.J. McClements, Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract, Eur. Polym. J. 72 (2015) 698–716 . [188] H.T. Hoang, S.H. Jo, Q.T. Phan, H. Park, S.H. Park, C.W. Oh, K.T. Lim, Dual pH-/ thermo-responsive chitosan-based hydrogels prepared using" click" chemistry for colon-targeted drug delivery applications, Carbohydr. Polym. 260 (2021), 117812 . [189] K.S. Soppimath, T.M. Aminabhavi, A.M. Dave, S.G. Kumbar, W.E. Rudzinski, Stimulus-responsive “smart” hydrogels as novel drug delivery systems, Drug Dev. Ind. Pharm. 28 (8) (2002) 957–974 . [190] R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol. 86 (3) (2009) 215–223 . [191] Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug Deliv. Rev. 60 (15) (2008) 1650–1662 . [192] Y. Luo, Perspectives on important considerations in designing nanoparticles for oral delivery applications in food, J. Agric. Food Res. 2 (2020), 100031 . [193] Y. Luo, Food colloids binary and ternary nanocomplexes: Innovations and discoveries, Colloids Surf. B: Biointerfaces 196 (2020), 111309 . [194] D.J. McClements, Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability, Food Hydrocoll. 68 (2017) 238–245 . [195] D.J. McClements, E.A. Decker, Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (8) (2000) 1270–1282 . [196] C. Jacobsen, Some strategies for the stabilization of long chain n-3 PUFA-enriched foods: A review, Eur. J. Lipid Sci. Technol. 117 (11) (2015) 1853–1866 . [197] C. Jacobsen, M.B. Let, N.S. Nielsen, A.S. Meyer, Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation, Trends Food Sci. Technol. 19 (2) (2008) 76–93 . [198] A. Matalanis, E.A. Decker, D.J. McClements, Inhibition of lipid oxidation by encapsulation of emulsion droplets within hydrogel microspheres, Food Chem. 132 (2) (2012) 766–772 . [199] Z. Zhang, E.A. Decker, D.J. McClements, Encapsulation, protection, and release of polyunsaturated lipids using biopolymer-based hydrogel particles, Food Res. Int. 64 (2014) 520–526 . [200] J. Berman, U. Zorrilla-L´opez, G. Farr´e, C. Zhu, G. Sandmann, R.M. Twyman, T. Capell, P. Christou, Nutritionally important carotenoids as consumer products, Phytochem. Rev. 14 (5) (2015) 727–743 . [201] C.S. Boon, D.J. McClements, J. Weiss, E.A. Decker, Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions, J. Agric. Food Chem. 57 (7) (2009) 2993–2998 . [202] C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Inhibition of β-carotene degradation in oil-in-water nanoemulsions: influence of oil-soluble and water- soluble antioxidants, Food Chem. 135 (3) (2012) 1036–1043 . [203] C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Physical and chemical stability of β -carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type, Food Chem. 132 (3) (2012) 1221–1229 . [204] Z. Zhang, R. Zhang, D.J. McClements, Encapsulation of β-carotene in alginate- based hydrogel beads: Impact on physicochemical stability and bioaccessibility, Food Hydrocoll. 61 (2016) 1–10 . [205] M. Zhou, Q. Hu, T. Wang, J. Xue, Y. Luo, Alginate hydrogel beads as a carrier of low density lipoprotein/pectin nanogels for potential oral delivery applications, Int. J. Biol. Macromol. 120 (2018) 859–864 . [206] B. Qu, Y. Luo, Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors–A review, Int. J. Biol. Macromol. 152 (2020) 437–448 . [207] S. Mun, Y.R. Kim, D.J. McClements, Control of β-carotene bioaccessibility using starch-based filled hydrogels, Food Chem. 173 (2015) 454–461 . [208] I.A. Brownlee, A. Allen, J.P. Pearson, P.W. Dettmar, M.E. Havler, M.R. Atherton, E. Onsøyen, Alginate as a source of dietary fiber, Crit. Rev. Food Sci. Nutr. 45 (6) (2005) 497–510 . [209] F. Mancini, L. Montanari, D. Peressini, P. Fantozzi, Influence of alginate concentration and molecular weight on functional properties of mayonnaise, LWT Food Sci. Technol. 35 (6) (2002) 517–525 . [210] K. Wendin, K. Aaby, A. Edris, M.R. Ellekjaer, R. Albin, B. Bergenståhl, R. Solheim, Low-fat mayonnaise: influences of fat content, aroma compounds and thickeners, Food Hydrocoll. 11 (1) (1997) 87–99 . [211] H.S. Gujral, P. Sharma, N. Singh, D.S. Sogi, Effect of hydrocolloids on the rheology of tamarind sauce, J. Food Sci. Technol. 38 (4) (2001) 314–318 . [212] O. Smidsrod, K.I. Draget, Chemistry and physical properties of alginates, Carbohydr. Eur. 14 (1996) 6–13 . [213] D. Paraskevopoulou, D. Boskou, A. Paraskevopoulou, Oxidative stability of olive oil–lemon juice salad dressings stabilized with polysaccharides, Food Chem. 101 (3) (2007) 1197–1204 . [214] D. G´omez-Dı́az, J.M. Navaza, Rheology of food stabilizers blends, J. Food Eng. 64 (2) (2004) 143–149 . [215] I.M. Ferreira, K. Jorge, L.C. Nogueira, F. Silva, L.C. Trugo, Effects of the combination of hydrophobic polypeptides, iso- α acids, and malto- oligosaccharides on beer foam stability, J. Agric. Food Chem. 53 (12) (2005) 4976–4981 . [216] E.M. Hubbermann, A. Heins, H. St¨ockmann, K. Schwarz, Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates, Eur. Food Res. Technol. 223 (1) (2006) 83–90 . [217] P. Burey, B.R. Bhandari, T. Howes, M.J. Gidley, Gel particles from spray-dried disordered polysaccharides, Carbohydr. Polym. 76 (2009) 206–213 . [218] J.R. Stokes, Rheology of industrially relevant microgels, in: A. Fernandez-Neives, H. Wyss, J. Mattson, D.A. Weitz (Eds.), Microgel Suspensions – Fundamentals and Applications, Wiley-VCH, Weinheim, 2011 . [219] T. Funami, M. Unami, H. Yada, Y. Nakao, Gelation mechanism of curdlan by dynamic viscoelasticity measurements, J. Food Sci. 64 (1) (1999) 129–132 . [220] T. Funami, H. Yada, Y. Nakao, Curdlan properties for application in fat mimetics for meat products, J. Food Sci. 63 (2) (1998) 283–287 . [221] M. Ghanbari, M. Salavati-Niasari, F. Mohandes, B. Dolatyar, B. Zeynali, In vitro study of alginate–gelatin scaffolds incorporated with silica Nps as injectable, biodegradable hydrogels, RSC Adv. 11 (27) (2021) 16688–16697 . [222] C. Chang, L. Zhang, J. Zhou, L. Zhang, J.F. Kennedy, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions, Carbohydr. Polym. 82 (1) (2010) 122–127 . [223] P. Sikdar, M.M. Uddin, T.M. Dip, S. Islam, M.S. Hoque, A.K. Dhar, S. Wu, Recent advances in the synthesis of smart hydrogels, Mater. Adv. (2021) . [224] K.J. De France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose, Chem. Mater. 29 (11) (2017) 4609–4631 . [225] F. Ahmadi, Z. Oveisi, S.M. Samani, Z. Amoozgar, Chitosan based hydrogels: characteristics and pharmaceutical applications, Res. Pharm. Sci. 10 (1) (2015) 1 . [226] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater. (2009) . [227] H. Ghasemzadeh, F. Ghanaat, Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization, J. Polym. Res. 21 (3) (2014) 1–14 . [228] D. de Britto, S.P. Campana-Filho, Kinetics of the thermal degradation of chitosan, Thermochim. Acta 465 (1–2) (2007) 73–82 . [229] G.S. Liou, P.H. Lin, H.J. Yen, Y.Y. Yu, T.W. Tsai, W.C. Chen, Highly flexible and optical transparent 6F-PI/TiO 2 optical hybrid films with tunable refractive index and excellent thermal stability, J. Mater. Chem. A 3 (2010) 531–536 . [230] Y.S. Lipatov, Polymer blends and interpenetrating polymer networks at the interface with solids, Prog. Polym. Sci. 27 (9) (2002) 1721–1801 . [231] J.T. Zhang, R. Bhat, K.D. Jandt, Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties, Acta Biomater. 5 (1) (2009) 488–497 . [232] J. Lim, A. Chouai, S.T. Lo, W. Liu, X. Sun, E. Simanek, Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages, Bioconjug. Chem. 20 (11) (2009) 2154–2161 . [233] T. Iizawa, H. Taketa, M. Maruta, T. Ishido, T. Gotoh, S. Sakohara, Synthesis of porous poly (N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology, J. Appl. Polym. Sci. 104 (2) (2007) 842–850 . [234] A. Cretu, R. Gattin, L. Brachais, D. Barbier-Baudry, Synthesis and degradation of poly (2-hydroxyethyl methacrylate)-graft-poly ( ε -caprolactone) copolymers, Polym. Degrad. Stab. 83 (3) (2004) 399–404 . [235] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.F. Arndt, H.J.P. Adler, Review on hydrogel-based pH sensors and microsensors, Sensors 8 (1) (2008) 561–581 . [236] C. Alvarez-Lorenzo, A. Concheiro, A.S. Dubovik, N.V. Grinberg, T.V. Burova, V. Y. Grinberg, Temperature-sensitive chitosan-poly (N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties, J. Control. Release 102 (3) (2005) 629–641 . [237] B. Kim, N.A. Peppas, Poly (ethylene glycol)-containing hydrogels for oral protein delivery applications, Biomed. Microdevices 5 (4) (2003) 333–341 . [238] N.M. Ranjha, S. Khan, Chitosan/poly (vinyl alcohol) based hydrogels for biomedical applications: a review, J. Pharm. Pharmacol. 2 (1) (2013) 30–41 . [239] H.P. Cong, P. Wang, S.H. Yu, Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design, Chem. Mater. 25 (16) (2013) 3357–3362 . [240] M. Yalpani, Polysaccharides: Syntheses, Modifications and Structure/Property Relations, Elsevier, 2013 . Download 1.62 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling