Referati 2023-farg’ona mavzu: "Hesh jadvallari va funktsiyalari" Bajardi: Sayitxonov Isroil
Download 304.81 Kb.
|
1 2
Bog'liqMUHAMMAD AL
Bu metod juda effektiv, elementlarni jadvalga joylash vaqti ham, qidiruv vaqti ham faqat xesh-funksiyani hisoblashga ketadi.
Bu usulning 2 ta yaqqol kamchiligi bor: 1) identifikatorlar jadvalining xotira hajmidan unumsiz foydalanilishi. Massiv o‘lchami xesh-funksiya qiymatlar sohasiga mos kelishi kerak, ayni vaqtda real holatda jadvalda saqlanayotgan identifikatorlar ancha kam bo‘lishi mumkin. 2) mos keluvchi xesh-funksiyani tanlay bilish. Xesh-funksiyadan natija olish - “xeshlash” simvollar zanjiri ustida oddiy arifmetik va mantiqiy amallarni bajarish hisobiga erishiladi. Xesh-funksiyadan natija olish - “xeshlash” simvollar zanjiri ustida oddiy arifmetik va mantiqiy amallarni bajarish hisobiga erishiladi. Xesh-adreslashda identifikatorlar jadvalining bir yacheykasiga 2 ta turli xil bo‘lgan identifikatorlar joylashishi mumkin emas. Bu vaziyat, ya’ni 2 yoki undan ortiq identifikatorlar xesh funksiyaning bir xil qiymatiga ega bo‘lish xodisasi kolliziya deb nomlanadi. Demak, kolliziyaning yuzaga kelishi 2 ta har xil identifikator A1 va A2larning xesh-funksiya qiymatlari n1 va n2 bir xil (n1=n2) bo‘lishi hisoblanadi. Kolliziya xolati Kolliziya ro‘y berishini butunlay oldini oladigan (https://muhaz.org/gimnastika-mashgulotlarida-shikaslanishni-oldini-olish-va-xavf.html), yaxshi xesh-funksiyani qurish mumkinmi? Kolliziya ro‘y berishini butunlay oldini oladigan, yaxshi xesh-funksiyani qurish mumkinmi? Aniqki, butunlay kolliziyaga uchramasligi uchun xesh-funksiyaning har bir natijaviy qiymati unikal bo‘lishi kerak. Kolliziya muammosini echish uchun turli usullarni qo‘llash mumkin. Ulardan biri “rexeshlash” metodi hisoblanadi. Bu metodga ko‘ra, A element uchun xesh-funksiya orqali hisoblangan h(A) adresi band bo‘lgan yacheykani ko‘rsatsa, unda n1=h1(A) funksiya qiymatini hisoblash zarur va n1 adresga tegishli yacheykani bandligini tekshirish kerak. Agar n1 ham band bo‘lsa, unda h2(A) qiymat hisoblanadi (https://muhaz.org/differensial-va-integral-hisob-komandalarining-hususiyatlari-1.html), shu tariqa bo‘sh yacheyka to’lguncha yoki hi(A) navbatdagi qiymat h(A) bilan mos kelgunga qadar davom etadi. Oxirgi holatda identifikatorlar jadvali to‘lgan va bo‘sh joy boshqa yo‘q, degan xatolik to‘g‘risida ma’lumot beradi. Bu metodga ko‘ra, A element uchun xesh-funksiya orqali hisoblangan h(A) adresi band bo‘lgan yacheykani ko‘rsatsa, unda n1=h1(A) funksiya qiymatini hisoblash zarur va n1 adresga tegishli yacheykani bandligini tekshirish kerak. Agar n1 ham band bo‘lsa, unda h2(A) qiymat hisoblanadi, shu tariqa bo‘sh yacheyka to’lguncha yoki hi(A) navbatdagi qiymat h(A) bilan mos kelgunga qadar davom etadi. Oxirgi holatda identifikatorlar jadvali to‘lgan va bo‘sh joy boshqa yo‘q, degan xatolik to‘g‘risida ma’lumot beradi. hi(A) funksiyani hisoblashning eng oddiy metodi, uni hi(A)=(h(A)+pi)modNm asosida qurishdir, bu erda pi qandaydir bir hisoblangan butun son (https://muhaz.org/zakovat-intelektual-oyini.html), Nm –identifikatorlar jadvalidagi elementlarning maksimal soni. O‘z o‘rnida eng oddiy usul pi ni o‘rniga i ni qo‘yish bo‘ladi. Unda quyidagi formulani olamiz hi(A)=(h(A)+i)modNm. Bu holda xesh-funksiyaning bir xil qiymatlariga mos kelgan identifikatorlarni joylash uchun bo‘sh yacheykani qidirish mantiqan xesh-funksiya h(A) ko‘rsatgan joydan boshlanadi. hi(A) funksiyani hisoblashning eng oddiy metodi, uni hi(A)=(h(A)+pi)modNm asosida qurishdir, bu erda pi qandaydir bir hisoblangan butun son, Nm –identifikatorlar jadvalidagi elementlarning maksimal soni. O‘z o‘rnida eng oddiy usul pi ni o‘rniga i ni qo‘yish bo‘ladi. Unda quyidagi formulani olamiz hi(A)=(h(A)+i)modNm. Bu holda xesh-funksiyaning bir xil qiymatlariga mos kelgan identifikatorlarni joylash uchun bo‘sh yacheykani qidirish mantiqan xesh-funksiya h(A) ko‘rsatgan joydan boshlanadi Download 304.81 Kb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling