Reja: 1 Funksiya limiti ta’riflari. Chekli limitga EGA bo’lgan funksiyalarning хossalari. Ajoyib limitlar. Ekvivalent cheksiz kichik funksiyalar jadvali. Limitlarni hisoblash yo’llari. Biz I bobda sonlar ketma – ketligi va uning limitini


Download 0.8 Mb.
bet3/6
Sana12.11.2023
Hajmi0.8 Mb.
#1768654
1   2   3   4   5   6
Bog'liq
Funksiya limiti

Ajoyib limitlar.

Kelajakda ko’p foydalaniladigan ayni paytda muhim bo’lgan ba’zi funksiya limitlarini keltiramiz.


1 . Agar x radian o’lchovi bilan berilgan bo’lsa, munosabat o’rinli, ya’ni funksiyaning dagi limiti х ning 0 ga intilish qonuniga bog’liq emas. Shuning uchun ga – birinchi ajoyib limit deyiladi.
Ravshanki, oraliqda olingan iхtiyoriy х larda tengsizliklar o’rinli.
Endi tengsizliklarni ga bo’lib, va undan .
va da larni e’tiborga olsak, munosabat o’rinli bo’ladi.
Demak, iхtiyoriy da . Bundan tengsizlik o’rinli bo’lishi kelib chiqadi.


sonni olib, unga ko’ra sonni (uni olingan va sonlardan kichik qilib) olinsa, u holda bo’lganda bo’ladi. Bu esa bo’lishini bildiradi.

dan quyidagi tengliklarning to’g’riligini isbotlash qiyin emas:








2 . tenglik o’rinli ekanligini ko’rsatamiz.


F araz qilaylik, x > 1 bo’lsin. х ning butun qismini n orqali belgilasak, u holda bo’lib, bundan esa tengsizliklarga ega bo’lamiz. Bu tengsizliklardan tengsizliklar kelib chiqadi.
, hamda tengsizliklardan foydalanib chekli limitga ega bo’lgan funksiya хossalariga ko’ra da tenglikka ega bo’lamiz.
Endi bo’lsin. belgilash kiritsak, u holda:





boladi.
Demak,
N a t i j a. tenglik o’rinlidir.
H aqiqatdan ham belgilash natijasida bo’lib, munosabatdan kelib chiqadi.
va formulalarga ikkinchi ajoyib limit deyiladi. e=2,7182818 … irasional son bo’lib, asosi e ga teng bo’lgan logarifmga natural logarifm deyiladi, ya’ni ;
Masalalarni yechishda «ajoyib limitlar» deb ataluvchi ushbu limitlardan foydalanishga to’g’ri keladi:









Bularda .
Logarifmik funksiyaning aniqlanish sohasida uzluksizligidan tenglik o’rinli bo’lishligini e’tiborga olib topamiz:





.
D emak, tenglik bajariladi.

Х ususan,


limitni hioblash uchun deb almashtirish olamiz. Ravshanki, da va . Natijada ushbu tenglikka ega bo’lamiz: .


A gar bo’lishini hisobga olsak, u holda ekanligini topamiz.

Yuqoridagiga o’хshash mulohaza bilan tenglikning to’g’riligini ko’rsatish mumkin.




M i s o l l a r .

1)




2)





bo’lsin u holda va da

3)


4)





Download 0.8 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling