Trapetsiyalar formulasi
aniq integralni hisoblash talab etilsin funksiya kesmada uzluksiz kesmani nuqtalar orqali ta teng qismiy kesmalarga ajratamiz. Funksiyaning nuqtalaridagi qiymatlarini hisoblaymiz qismiy kesmalarning uzunligi kattalik integrallash qadami deyiladi. Bo’linish nuqtalaridan ordinatlarni o’tkazamiz. Ordinatlar oxirlarini to’g’ri chiziqlar bilan tutashtirib trapetsiyalar hosil qilamiz.
Aniq integralning taqribiy qiymati uchun, hosil bo’lgan trapetsiyalar yuzlarining yig’indisini olamiz. Bu holda
Shunday qilib, natijada
formulani olamiz. (1) formulaga trapetsiyalar formulasi deb ataladi. Bu formulada egri chiziqli trapetsiyalarning yuzlarini to’g’ri chiziqli trapetsiyalar yuzlari bilan taqriban almashtirdik. o’sib borishi bilan to’g’ri chiziqli trapetsiyalarning yuzi egri chiziqli trapetsiyalar yuzlariga cheksiz yaqinlashib boradi.
Bu taqribiy hisoblashda yo’l qo’yilgan absolyut xato .
ifodadan katta emasligini ko’rsatish mumkin, bunda ning kesmadagi eng katta qiymati.
2. Simpson formulasi. kesmani ta juft miqdordagi teng qismlarga bo’lamiz. Uchta nuqtalar olib ulardan parabola o’tkazamiz. Bu parabola bilan funksiyaning kesmadagi grafigini almashtiramiz. Xuddi shunga o’xshash funksiyaning grafigini va boshqa kesmalarda ham almashtiramiz.
Shunday qilib, bu usulda berilgan egri chiziq bilan chegaralangan trapetsiyaning yuzini kesmalarda parabolalar bilan chegaralangan egri chiziqli trapetsiyalar yuzlarining yig’indisi bilan almashtiriladi. Bunday egri chiziqli trapetsiya parabolik trapetsiya deyiladi.
Parabolik trapetsiyalar yuzlarini qo’shib,
Bu formula Simpson (parabolalar) formulasi deyiladi. Simpson formulasining absolyut xatosi dan katta bo’lmaydi, bunda funksiyaning kesmadagi eng katta qiymati. Xatolarni baholash ifodalaridan Ma’lumki kattalik kattalikka nisbatan tezroq o’sgani uchun Simpson formulasining xatoligi trapetsiyalar formulasi xatosiga nisbatan ancha tez kamayadi.
Do'stlaringiz bilan baham: |