Роль и место темы "Многоугольники" в школьном курсе геометрии
Download 0.54 Mb.
|
II способ: Перед доказательством Т.3.4 учитель предлагает учащимся самостоятельно сформулировать ту теорему, которая получается из Т.3.3, если в ней поменять условие и заключение.
Учащиеся заполняют таблицу:
Учитель предлагает доказать эту теорему. После доказательства возвращается к первой строчке таблицы, вводятся термины "прямая теорема", "обратная теорема". После доказательства Т.3.4 надо предложить учащимся ряд упражнений на образование обратных теорем: Например, составить для каждой из теорем обратную: Если сумма цифр числа нацело делится на 9, то само число делится на 9. Если число оканчивается двумя нулями, то оно нацело делится на 4. Если в одном и том же круге центральные углы равны, то и соответственные им дуги равны. Ученик, составляя обратную теорему, должен сказать верна ли она. В упражнениях полезно ввести и жизненные примеры: образовать обратное утверждение к следующему: если ученик болен, то он пропускает уроки. Также полезно предложить учащимся привести примеры доказанных ранее теорем сформировать для них обратные. При этом лучше переформулировать теоремы таким образом, чтобы они читались: "Если., то.". Можно взять в качестве примера теорему о вертикальных углах, I и II признаки равенства треугольников и теорему о смежных углах. На примере теорем 3.3 и 3.4 и признаков равенства треугольников показывается, что в этих случаях наряду с исходной теоремой верна и обратная; на примере теоремы о вертикальных углах - что возможен случай, когда прямая теорема верна, а обратная утверждение неверно. Можно также предложить ученикам сформировать теорему обратную к теореме 3.4 (или к любой другой, которую они формировали как обратную), и убедиться в том, что теорема, обратная обратной, есть прямая теорема. Download 0.54 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling