Romero-Sarmiento et al


Download 496.38 Kb.
Pdf ko'rish
bet3/3
Sana06.08.2017
Hajmi496.38 Kb.
#12864
1   2   3

6. Conclusions 

693 


Numerous land-plant biomarkers have been identified in the 

694 


aliphatic and aromatic fraction of the extracts of Early Carboniferous 

695 


Romero-Sarmiento et al., 

33

coals from Scotland. Among these compounds, several have been 



696 

classically considered to be conifer-derived. However, micro and 

697 

macrofossil evidence for conifers does not go further back than the 



698 

Upper Carboniferous while palynological and palaeobotanical data 

699 

indicate that these coals mainly derive from arborescent lycopsid 



700 

(Lepidodendrales)-dominated forest. This discrepancy between the lipid 

701 

and other fossil records leads to the following hypotheses: 



702 

1.

 



Conifers had evolved already in the Early Carboniferous and this 

703 


has now been evidenced with lipids. 

704 


2.

 

The metabolic pathways giving rise to the observed biomarkers 



705 

had evolved already in the Early Carboniferous in plants which 

706 

are related to the conifers.  



707 

3.

 



The identified biomarkers are derived from terrestrial plants 

708 


which are not closely related to the conifers. This implies the 

709 


evolution of a separate, possibly extinct, or as yet unidentified 

710 


metabolic pathway for these and associated products. 

711 


An argument for hypothesis 3 is that retene, simonellite and 

712 


tetrahydroretene – which are generally related to conifers – could also 

713 


derive from the degradation of kaurane-type compounds synthesised by 

714 


the early bryophytes. The Lower Carboniferous Scottish coals can be 

715 


related to a flora dominated by arborescent lycopsids in conjunction 

716 


with some ferns, sphenopsids and pteridosperms. Among these plants 

717 


which are presently extinct, pteridosperms, which are relatively closely 

718 


related to conifers, and arborescent lycopsids, which are not related to 

719 


Romero-Sarmiento et al., 

34

conifers, appear as the best possible sources for the “typical conifer” 



720 

biomarkers. Therefore hypotheses 2 and 3 seem the most likely at 

721 

present.  



722 

 

723 



Acknowledgements 

724 


The authors acknowledge financial support from the “ECLIPSE II 

725 


and INSU 2009 – Terrestrialization” grant from the INSU department of 

726 


CNRS. Thanks are extended to Dr. Charles Wellman (Department of 

727 


Animal and Plant Sciences, University of Sheffield, U.K.) for guidance 

728 


and assistance to M.V. during field work; this latter was funded by an 

729 


exchange grant from “EGIDE Programme d'Actions Intégrées franco-

730 


britanniques ALLIANCE” of the British Council and the Ministère des 

731 


Affaires Étrangères of France, which is also gratefully acknowledged. M-

732 


F. R-S. acknowledges receipt of a scholarship (No. E07D402105VE) 

733 


from the Programme Alβan. G. J. M.V. benefited from a position as 

734 


invited professor at the Université Lille 1 (France) and a Heisenberg 

735 


Stipend by the German Science Foundation (DFG). The authors are 

736 


grateful to François Baudin (Université Paris 6) for performing the Rock-

737 


Eval and LECO analyses and to Brigitte Meyer-Berthaud (CNRS-

738 


UMR0931 AMAP) for helpful discussions in palaeobotany. This is a 

739 


contribution to the ANR project “Global Perspectives on the 

740 


Terrestrialization Process”. The editor Finn Surlyk, Jørgen A. Bojesen-

741 


Koefoed, and an anonymous reviewer are acknowledged for constructive 

742 


comments on the manuscript. 

743 


Romero-Sarmiento et al., 

35

 



744 

References 

745 


Achari, R.G., Shaw, G., Holleyhead, R., 1973. Identification of ionene 

746 


and other carotenoid degradation products from the pyrolysis of 

747 


sporopollenins derived from some pollen exines, a spore coal and 

748 


the Green River shale. Chemical Geology 12, 229 – 234. 

749 


Alexander, R., Kagi, R.I., Rowland, S.J., Sheppard, P.N., Chirila, T.V., 

750 


1985. The effects of thermal maturity on distribution of 

751 


dimethylnaphthalenes and trimethylnaphthalenes in some ancient 

752 


sediments and petroleums. Geochimica et Cosmochimica Acta 49, 

753 


385 – 395. 

754 


Armstroff, A., Wilkes, H., Schwarzbauer, J., Littke, R, Horsfield, B., 

755 


2006. Aromatic hydrocarbon biomarkers in terrestrial organic 

756 


matter of Devonian to Permian age. Palaeogeography, 

757 


Palaeoclimatology, Palaeoecology, 240, 253 – 274. 

758 


Arouri, K.R., Greenwood, P.F., Walter, M.R., 2000. Biological affinities of 

759 


Neoproterozoic acritarchs from Australia: microscopic and chemical 

760 


characterisation Organic Geochemistry 31, 75 – 89 

761 


Asakawa, Y., 2004. Chemosystematics of the Hepaticae. Phytochemistry 

762 


65, 623 – 669. 

763 


Auras, S., Wilde, V., Scheffler, K., Hoernes, S., Kerp, H., Püttmann, W., 

764 


2006. Aromatized arborane/fernane hydrocarbons as biomarkers 

765 


for Cordaites. Naturwissenschaften 93, 616 – 621. 

766 


Romero-Sarmiento et al., 

36

Bastow, T., Alexander, R., Sosrowidjojo, I. B., Kagi, R.I., 1998. 



767 

Pentamethylnaphthalenes and related compounds in sedimentary 

768 

organic matter. Organic Geochemistry 28, 585 – 595. 



769 

Bastow, T., Singh, R., Van Aarssen, B., Alexander, R., Kagi, R. 2001. 2-

770 

methylretene in sedimentary material: a new higher plant 



771 

biomarker. Organic Geochemistry 32: 1211 – 1217. 

772 

Bechtel, A., Sachsenhofer, R.F., Zdravkov, A., Kostova, I., Gratzer, R., 



773 

2005. Influence of floral assemblage, facies and diagenesis on 

774 

petrography and organic geochemistry of the Eocene Bourgas coal 



775 

and the Miocene Maritza-East lignite (Bulgaria). Organic 

776 

Geochemistry 36, 1498 – 1522.  



777 

Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to 

778 

recognition of source beds. Geochimica et Cosmochimica Acta 22, 2 



779 

– 15. 


780 

Bray, P.S., Anderson, K.B., 2009. Identification of Carboniferous (320 

781 

Million Years Old) Class Ic Amber. Science 326, 132 – 134. 



782 

Brocks, J.J., Logan, G.A., Buick, R., Summons, R.E., 1999. Archean 

783 

molecular fossils and the early rise of Eukaryotes. Science 285, 



784 

1033 – 1036. 

785 

Brocks, J.J., Buick, R., Summons, R.E., Logan, G.A., 2003. A 



786 

reconstruction of Archean biological diversity based on molecular 

787 

fossils from the 2.78 to 2.45 billion-year-old Mount Bruce 



788 

Supergroup, Hamersley Basin, Western Australia. Geochimica et 

789 

Cosmochimica Acta 67, 4321 – 4335. 



790 

Romero-Sarmiento et al., 

37

Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan, G.A., 



791 

Bowden, S.A., 2005. Biomarker evidence for green and purple 

792 

sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 



793 

866 – 870. 

794 

Chopra, R.N., Kumra, K.P., 1988. Biology of Bryophytes. John Wiley & 



795 

Sons, New York, 350 p. 

796 

Clarkson, C., Campbell, W.E., Smith, P., 2003. In vitro antiplasmodial 



797 

activity of abietane and totarane diterpenes isolated from 

798 

Harpagophytum procumbens (devil's claw). Planta Medica 69, 720 – 

799 


724. 

800 


Cox, R.E., Yamamoto, S., Otto, A., Simoneit, B.R.T., 2007. Oxygenated 

801 


di- and tricyclic diterpenoids of southern hemisphere conifers. 

802 


Biochemical Systematics and Ecology 35, 342 – 362. 

803 


Day, W.C.,  Erdman, J.G., 1963. Ionene: a thermal degradation product 

804 


of β-carotene. Science 141, 808. 

805 


del Río, J. C., Garcia-Molla, J., González-Vila, F. J., Martin, F., 1994. 

806 


Composition and origin of the aliphatic extractable hydrocarbons in 

807 


the Puertollano (Spain) oil shale. Organic Geochemistry, 21, 897 – 

808 


909. 

809 


DiMichele W.A., 1980. Paralycopodites Morey & Morey, from the 

810 


Carboniferous of Euramerica — A Reassessment of Generic 

811 


Affinities and Evolution of "Lepidodendron" brevifolium Williamson. 

812 


American Journal of Botany 67, 1466 – 1476. 

813 


Romero-Sarmiento et al., 

38

DiMichele, W.A., Phillips, T.L., 1994. Paleobotanical and paleoecological 



814 

constraints on models of peat formation in the Late Carboniferous 

815 

of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 



816 

106, 39 – 90. 

817 

Dimitrova, T.K., Cleal, C.J., Thomas, B.A., 2005. Palynology of late 



818 

Westphalian-early Stephanian coal-bearing deposits in the eastern 

819 

South Wales Coalfield. Geological Magazine 142, 809 – 821.  



820 

Disnar, J.R., Harouna, M., 1994. Biological origin of tetra-cyclic 

821 

diterpanes, n-alkanes and other biomarkers found in Lower 



822 

Carboniferous Gondwana coals (Niger). Organic Geochemistry 21, 

823 

143 – 152. 



824 

Dzou, L.I.P., Noble, R.A., Senftle, J.T., 1995. Maturation effects on 

825 

absolute biomarker concentration in a suite of coals and associated 



826 

vitrinite concentrates. Organic Geochemistry 23, 681 – 697. 

827 

Eble, C.F., 1996. Lower and lower Middle Pennsylvanian coal 



828 

palynofloras, southwestern Virginia. International Journal of Coal 

829 

Geology 31, 67 – 113. 



830 

Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science 

831 

156, 1322 – 1335. 



832 

Eglinton, T.I., Eglinton, G., 2008. Molecular proxies for 

833 

paleoclimatology. Earth and Planetary Science Letters 275, 1 – 16. 



834 

Eigenbrode, J.L., Freeman, K.H., Summons, R.E., 2008. Methylhopane 

835 

biomarker hydrocarbons in Hamersley Province sediments provide 



836 

Romero-Sarmiento et al., 

39

evidence for Neoarchean aerobiosis. Earth and Planetary Science 



837 

Letters 273, 323 – 331.  

838 

Ellis, L., Singh, R., Alexander, R., Kagi, R., 1996. Formation of isohexyl 



839 

alkylaromatic hydrocarbons from aromatization-rearrangement of 

840 

terpenoids in the sedimentary environment: A new class of 



841 

biomarker. Geochimica and Cosmochimica Acta 60, 4747 – 4763. 

842 

Espitalié, J., Deroo, G., Marquis, F., 1986. La pyrolyse Rock-Eval et ses 



843 

applications. Revue de l'Institut Français du Pétrole 41, 73 – 89. 

844 

Fabianska, M. J., Bzowska, G., Matuszewska, A., Racka, A., Skret, U., 



845 

2003. Gas chromatography-mass spectrometry in geochemical 

846 

investigation of organic matter of the Grodziec Beds (Upper 



847 

Carboniferous), Upper Silesian Coal Basin, Poland. Geochemistry 

848 

63, 63 – 91. 



849 

Falcon-Lang, H. J., 2000. Fire ecology of the Carboniferous tropical 

850 

zone. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 339 – 



851 

355. 


852 

Fleck, S., Michels, R., Izart, A., Elie, M., Landais, P., 2001. 

853 

Palaeoenvironmental assessment of Westphalian fluvio–lacustrine 



854 

deposits of Lorraine (France) using a combination of organic 

855 

geochemistry and sedimentology. International Journal of Coal 



856 

Geology 48, 65 – 88. 

857 

Fleck, S., Michels, R., Ferry, S., Malartre, F., Elion, P., Landais, P., 



858 

2002. Organic geochemistry in a sequence stratigraphic framework. 

859 


Romero-Sarmiento et al., 

40

The siliciclastic shelf environment of Cretaceous series, SE France. 



860 

Organic Geochemistry 33, 1533 – 1557. 

861 

Fowler, M.G., Goodarzi, F., Gentzis, T., Brooks, P.W., 1991. 



862 

Hydrocarbon potential of Middle and Upper Devonian coals from 

863 

Melville Island, Arctic Canada. Organic Geochemistry 17, 681 – 



864 

694. 


865 

George, S.C., 1992. Effect of igneous intrusion on the organic 

866 

geochemistry of a siltstone and an oil shale horizon in the Midland 



867 

Valley of Scotland. Organic Geochemistry 18, 705 – 723. 

868 

Glasspool, I.J., Hemsley, A.R., Scott, A.C., Golitsyn, A., 2000. 



869 

Ultrastructure and affinity of Lower Carboniferous megaspores 

870 

from the Moscow Basin, Russia. Review of Palaeobotany and 



871 

Palynology 109, 1 – 31. 

872 

Hautevelle, Y., Michels, R., Malartre, F., Trouiller, A., 2006. Vascular 



873 

plant biomarkers as proxies for palaeoflora and palaeoclimatic 

874 

changes at the Dogger/Malm transition of the Paris Basin (France). 



875 

Organic Geochemistry 37, 610 – 625. 

876 

Huang, W.-Y., Meinschein, W.G., 1979. Sterols as ecological indicators. 



877 

Geochimica et Cosmochimica Acta 43,739 – 745. 

878 

Hunt, J.M., 1995. Petroleum Geochemistry and Geology. W.H. Freeman 



879 

and Co., New York. 

880 

Iinuma, Y., E. Brüggemann, T. Gnauk, K. Müller, M. O. Andreae, G. 



881 

Helas, R. Parmar, and H. Herrmann, 2007. Source characterization 

882 

of biomass burning particles: The combustion of selected European 



883 

Romero-Sarmiento et al., 

41

conifers, African hardwood, savanna grass, and German and 



884 

Indonesian peat, Journal of Geophysical Research, 112, D08209. 

885 

International Committee of Coal Petrology (ICCP), 1975. International 



886 

Handbook for Coal Petrology, 2nd ed., CNRS, Paris. 

887 

Izart, A., Sachsenhofer, R. F., Privalov, V. A., Elie, M., Panova, E. A., 



888 

Antsiferov, V. A., Alsaab, D., Rainer, T., Sotirov, A., Zdravkov, A., 

889 

Zhykalyak, M. V., 2006. Stratigraphic distribution of macerals and 



890 

biomarkers in the Donets Basin: Implications for paleoecology, 

891 

paleoclimatology and eustacy. International Journal of Coal 



892 

Geology, 66, 69 – 107. 

893 

Jiang, C., Alexander, R., Kagi, R.I., Murray, A. P., 1998. Polycyclic 



894 

aromatic hydrocarbons in ancient sediments and their 

895 

relationships to palaeoclimate. Organic Geochemistry 29, 1721 – 



896 

1735. 


897 

Kashirtsev, V.A., Moskvin, V.I., Fomin, A.N., Chalaya, O.N., 2010. 

898 

Terpanes and steranes in coals of different genetic types in Siberia. 



899 

Russian Geology and Geophysics 51, 404 – 411. 

900 

Murchison D. G., Raymond A. C., 1989. Igneous activity and organic 



901 

maturation in the Midland Valley of Scotland. International Journal 

902 

of Coal Geology 14, 47-82. 



903 

Niklas, K.J., 1976a. The chemotaxonomy of Parka decipiens from the 

904 

lower old red sandstone, Scotland (U.K.). Review of Palaeobotany 



905 

and Palynology 21, 205 – 217. 

906 


Romero-Sarmiento et al., 

42

Niklas, K.J., 1976b Chemotaxonomy of Prototaxites and evidence for 



907 

possible terrestrial adaptation. Review of Palaeobotany and 

908 

Palynology 22, 1 – 17. 



909 

Niklas, K.J., Chaloner, W.G., 1976. Chemotaxonomy of some 

910 

problematic palaeozoic plants. Review of Palaeobotany and 



911 

Palynology 22, 81 – 104 

912 

Niklas, K.J., Pratt, L.M., 1980. Evidence for lignin-like constituents in 



913 

early silurian (llandoverian) plant fossils. Science 209, 396 – 397. 

914 

Noble, R. A., 1986. A geochemical study of bicyclic alkanes and 



915 

diterpenoid hydrocarbons in crude oils, sediments and coals. 

916 

Thesis. The University of Western Australia. 398 p. 



917 

Noble, R. A., Alexander, R., Kagi R.I., Knox, J., 1985. Tetracyclic 

918 

diterpenoid hydrocarbons in some Australian coals, sediments and 



919 

crude oils. Geochimica and Cosmochimica Acta 49, 2141 – 2147.  

920 

Noble, R. A., Alexander, R., Kagi R.I., 1987. Configurational 



921 

isomerization in sedimentary bicyclic alkanes. Organic 

922 

Geochemistry 11, 151 – 156.  



923 

Olcott, A.N., 2007. The utility of lipid biomarkers as paleoenvironmental 

924 

indicators. Palaios 22, 111 – 113. 



925 

Opluštil, S, Bek, J, Schultka, S, 2009. Re-examination of the genus 

926 

Omphalophloios White, 1898 from the Upper Silesian Coal Basin.  

927 


Bulletin of Geosciences 85, 39 – 52. 

928 


Oros, D.R., Simoneit, B.R.T., 2001a. Identification and emission factors 

929 


of molecular tracers in organic aerosols from biomass burning Part 

930 


Romero-Sarmiento et al., 

43

1. Temperate climate conifers. Applied Geochemistry 16, 1513 – 



931 

1544. 


932 

Oros, D.R., Simoneit, B.R.T., 2001b. Identification and emission factors 

933 

of molecular tracers in organic aerosols from biomass burning Part 



934 

2. Deciduous trees. Applied Geochemistry 16, 1545 – 1565. 

935 

Oros, D.R., Abas, M.R.b., Omar, N.Y.M.J., Rahman, N.A., Simoneit, 



936 

B.R.T., 2006. Identification and emission factors of molecular 

937 

tracers in organic aerosols from biomass burning: Part 3. Grasses. 



938 

Applied Geochemistry 21, 919 – 940. 

939 

Otto, A., Simoneit, B.R.D., 2001. Chemosystematics and diagenesis of 



940 

terpenoids in fossil conifer species and sediment from the Eocene 

941 

Zeitz Formation, Saxony, Germany. Geochimica et Cosmochimica 



942 

Acta 65, 3505 – 3527. 

943 

Otto, A., Wilde, V., 2001. Sesqui-, di- and triterpenoids as 



944 

chemosystematic markers in extant conifers - A review. The 

945 

Botanical Review 67, 141 – 238. 



946 

Otto, A., Walther, H., Püttmann, W., 1997. Sesqui- and diterpenoid 

947 

biomarkers preserved in Taxodium-rich Oligocene Oxbow Lake 



948 

Clays, Weisselster basin, Germany. Organic Geochemistry 26, 105 

949 

– 115. 


950 

Otto, A., Simoneit, B.R.T., Wilde, V., Kunzmann, L., Püttmann, W., 

951 

2002. Terpenoid composition of three fossil resins from Cretaceous 



952 

and Tertiary conifers. Review of Palaeobotany and Palynology 120, 

953 

203 – 215. 



954 

Romero-Sarmiento et al., 

44

Ourisson, G., Albrecht, P., Rohmer, M., 1979. The hopanoids. 



955 

Palaeochemistry and biochemistry of a group of natural products. 

956 

Pure and Applied Chemistry 51, 709 – 729. 



957 

Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting 

958 

molecular fossils in petroleum and ancient sediments. Prentice 



959 

Hall, Englewood Cliffs, New Jersey. 363 p. 

960 

Peters, K.E., Walters, C.W., Moldowan, J.M., 2005. The Biomarker 



961 

Guide. Cambridge University Press. Cambridge -706 p. 

962 

Philp, R.P., 1985. Fossil Fuel Biomarkers Applications and Spectra. 



963 

Elsevier, Amsterdam. 

964 

Phillps, T., 1979. Reproduction of heterosporous arborescent lycopods 



965 

in the Mississippian - Pennsylvanian of Euramerica. Review of 

966 

Palaeobotany and Palynology 27, 239 – 289. 



967 

Pinto A.C., Zocher D.H.T., Rezende C.M., Gottlieb H.E., 1995. A new 

968 

diterpene with a totarane skeleton from Vellozia flavicans. Natural 



969 

Product Research 6, 209 – 213. 

970 

Radke, M., Willsch, H., Leythaeuser, D., 1982. Aromatic components of 



971 

coal: relation of distribution pattern to rank. Geochimica et 

972 

Cosmochimica Acta 46, 1831 – 1848. 



973 

Radke, M., Willsch, H., Welte, D.H., 1986. Maturity parameters based 

974 

on aromatic hydrocarbons: influence of the organic matter type. 



975 

Organic Geochemistry 10, 51 – 63. 

976 


Romero-Sarmiento et al., 

45

Radke, M., Vriend, S. P., Ramanampisoa, L. R., 2000. 



977 

Alkyldibenzofurans in terrestrial rocks: Influence of organic facies 

978 

and maturation. Geochimica et Cosmochimica Acta 64, 275 – 286. 



979 

Rampen, S.W, Abbas, B.A., Schouten, S., Sinninghe Damsté, J.S., 

980 

2010. A comprehensive study of sterols in marine diatoms 



981 

(Bacillariophyta): Implications for their use as tracers for diatom 

982 

productivity. Limmonology and Oceanography 55, 91 – 105. 



983 

Romero-Sarmiento, M.F., Riboulleau, A., Vecoli, M., Versteegh., G., 

984 

2010. Occurrence of retene in upper Silurian – Lower Devonian 



985 

sediments from North Africa: Origin and implications. Organic 

986 

Geochemistry 41, 302 – 306. 



987 

Schulze, T., Michaelis, W., 1990. Structure and origin of terpenoid 

988 

hydrocarbons in some German coals. Organic Geochemistry 16, 



989 

1051 – 1058. 

990 

Scott, A., 1974. The earliest conifer. Nature 251, 707 – 708. 



991 

Scott, A.C., Hemsley, A. R., 1996. Palaeozoic megaspores. Chapter 18G. 

992 

In: Jansonius, J. & McGregor, D.C. (ed.) Palynology: principles and 



993 

applications. American Association of Stratigraphic Palynologists 

994 

Foundation, Vol. 2, 629 – 639. 



995 

Scott, A.C., Jones, T.P., 1994. The nature and influence of fire in 

996 

Carboniferous ecosystems. Palaeogeography, Palaeoclimatology, 



997 

Palaeoecology 106, 9 l – 112. 

998 

Scott, A.C., Galtier, J., Clayton, G., 1984. Distribution of anatomically-



999 

preserved floras in the Lower Carboniferous in Western Europe. 

1000 


Romero-Sarmiento et al., 

46

Transaction of the Royal Society of Edinburgh: Earth Sciences 75, 



1001 

311 – 340. 

1002 

Seifert, W.K., Moldowan, J.M., 1978. Applications of steranes, terpanes 



1003 

and monoaromatics to the maturation, migration and source of 

1004 

crude oils. Geochimica et Cosmochimica Acta 42, 77 – 95. 



1005 

Seifert, W.K., Moldowan, J.M., 1980. The effect of thermal stress on 

1006 

source rock quality as measured by hopane stereochemistry. In: 



1007 

Douglas, A.G., Maxwell, J.R. (Eds.), Advances in Organic 

1008 

Geochemistry, 1979. Pergamon Press, 229 – 237. 



1009 

Seifert, W.K., Moldowan, J.M., 1986. Use of biological markers in 

1010 

petroleum exploration. In: Johns, R.B. (Ed.), Biological Markers in 



1011 

the Sedimentary Record, Methods in Geochemistry and 

1012 

Geophysics, vol. 24. Elsevier, Amsterdam, pp. 261–290. 



1013 

Sheng, G., Simoneit, B. R. T., Leif, R. N., Chen, X., Fu, J., 1992. 

1014 

Tetracyclic terpanes enriched in Devonian cuticle humic coals. 



1015 

Fuel, 71, 523 – 532. 

1016 

Shiea, J., Brassell, S.C., Ward, D.M., 1990. Mid-chain branched mono- 



1017 

and dimethyl alkanes in hot spring cyanobacterial mats: a direct 

1018 

biogenic source for branched alkanes in ancient sediments? 



1019 

Organic Geochemistry 15, 223 – 231. 

1020 

Simoneit, B. R. T., Grimalt, J. O., Wang, T. G., Cox, R. E., Hatcher, P. 



1021 

G., Nissenbaum, A., 1986. Cyclic terpenoids of contemporary 

1022 

resinous plant detritus and of fossil woods, ambers and coals. 



1023 

Organic Geochemistry 10, 877 – 889. 

1024 


Romero-Sarmiento et al., 

47

Spinner, E., 1969. Megaspore assemblages from Viséan deposits at 



1025 

Dunbar, East Lothian, Scotland. Palaeontology 12, 441 – 458. 

1026 

Spinner, E., Clayton, G., 1973. Viséan spore assemblages from 



1027 

Skateraw, East Lothian, Scotland. Pollen et Spores XV, 139 – 165. 

1028 

Stefanova, M., Markova, K., Marinov, S., Simoneit, B.R.T., 2005. 



1029 

Molecular indicators for coal-forming vegetation of the Miocene 

1030 

Chukurovo lignite, Bulgaria. Fuel 84, 1830 – 1838. 



1031 

Talyzina, N.M., Moldowan, J.M., Johannisson, A., Fago, F.J., 2000. 

1032 

Affinities of Early Cambrian acritarchs studied by using 



1033 

microscopy, fluorescence flow cytometry and biomarkers. Review of 

1034 

Palaeobotany and Palynology 108, 37 – 53. 



1035 

Tissot, B., Welte, D.M., 1984. Petroleum Formation and Occurrence. 

1036 

Springer-Verlag, Berlin, 699 p. 



1037 

Taylor, T.N., Taylor, E.L., Krings, M., 2009.  Paleobotany: The Biology 

1038 

and Evolution of Fossil Plants. Academic Press, 1230 p.  



1039 

Thomas, B. R., 1969. Organic Geochemistry. Methods and results, 

1040 

chapter Kauri resins- modern and fossil. Springer Verlag, Berlin, 



1041 

599 – 618. 

1042 

Tuo, J., Philp, R. P., 2005. Saturated and aromatic diterpenoids and 



1043 

triterpenoids in Eocene coals and mudstones from China. Applied 

1044 

Geochemistry 20, 367 – 381.  



1045 

Underhill, J. R., Monaghan, A. A., Browne, M. A. E., 2008. Controls on 

1046 

structural styles, basin development and petroleum prospectivity in 



1047 

Romero-Sarmiento et al., 

48

the Midland Valley of Scotland. Marine and Petroleum Geology 25, 



1048 

1000 – 1022. 

1049 

van Aarssen, B.K.G, Bastow, T.P., Alexander, R., Kagi, R., 1999. 



1050 

Distributions of methylated naphthalenes in crude oils: indicators 

1051 

of maturity, biodegradation and mixing. Organic Geochemistry 30, 



1052 

1213 – 1227. 

1053 

van Aarssen, B.K.G., Alexander, R., Kagi, R.I, 2000. Higher plant 



1054 

biomarkers reflect palaeovegetation changes during Jurassic times. 

1055 

Geochimica et Cosmochimica Acta 64, 1417 – 1424. 



1056 

Ventura, G.T., Kenig, F., Reddy, C.M., Schieber, J., Frysinger, G.S., 

1057 

Nelson, R.K., Dinel, E., Gaines, R.B., Schaeffer, P., 2007. Molecular 



1058 

evidence of Late Archean archaea and the presence of a subsurface 

1059 

hydrothermal biosphere. Proccedings of the National Academy of 



1060 

Sciences 104, 14260 – 14265. 

1061 

Vliex, M., Hagemann, H.W., Püttmann, W., 1994. Aromatized 



1062 

arborane/fernane hydrocarbons as molecular indicators of floral 

1063 

changes in Upper Carboniferous/Lower Permian strata of the Saar-



1064 

Nahe Basin, southwestern Germany. Geochimica et Cosmochimica 

1065 

Acta 58, 4689 – 4702. 



1066 

Volkova, I.B., 1994. Nature and composition of the Devonian coals of 

1067 

Russia. Energy and Fuels 8, 1489 – 1493 



1068 

Wagner, R.H., 1989. A late Stephanian forest swamp with 

1069 

Sporangiostrobus fossilized by volcanic ash fall in the Puertollano 

1070 


Romero-Sarmiento et al., 

49

Basin, central Spain. International Journal of Coal Geology 12, 523 



1071 

– 552. 


1072 

Waldbauer, J.R., Sherman, L.S., Sumner, D.Y., Summons, R.E., 2009. 

1073 

Late Archean molecular fossils from the Transvaal Supergroup 



1074 

record the antiquity of microbial diversity and aerobiosis. 

1075 

Precambrian Research 169, 28 – 47. 



1076 

Wang, S. J., 1998. The cordaitean fossil plants from Cathaysian area in 

1077 

China. Acta Botanica Sinica 40, 573 – 579. 



1078 

Wang, T.G., Simoneit, B.R.T., 1990. Organic geochemistry and coal 

1079 

petrology of Tertiary brown coal in the Zhoujing mine, Baise Basin, 



1080 

South China. Fuel 69, 12 – 20. 

1081 

Wu C.-L., Jong J.-R., 2001. A Cyclic Peroxide of Clerodenoic Acid from 



1082 

the Taiwanese Liverwort Schistochila acuminata. Journal of Asian 

1083 

Natural Products Research 3, 241 – 246.  



1084 

Yi, W., Berry, C.M., Shougang, H., Honghe, X., Qiang, F. (2007) The 

1085 

Xichong flora of Yunnan, China: diversity in late Mid Devonian 



1086 

plant assemblages. Geological Journal 42, 339 – 350. 

1087 

Zhou, Y.X., 1994. Earliest pollen-dominated microfloras from the early 



1088 

Late Carboniferous of the Tian Shan Mountains, NW China: their 

1089 

significance for the origin of conifers and palaeophytogeography. 



1090 

Review of Palaeobotany and Palynology 81, 193 – 211. 

1091 

 

1092 



Romero-Sarmiento et al., 

50

 



1093 

Figure captions 

1094 


Fig. 1. Simplified geologic map showing the outcrop sample positions at 

1095 


Dunbar (White Sand and Skateraw Bays) in the Midland Valley of 

1096 


Scotland (modified from Spinner and Clayton, 1973; Underhill et al., 

1097 


2008). 

1098 


 

1099 


Fig. 2. The outcrop geological succession showing alternating 

1100 


Carboniferous limestones, shales, sandstones and coals (modified from 

1101 


Spinner and Clayton, 1973).  

1102 


 

1103 


Fig. 3. Plot of HI vs. T

max


 values for Scottish coals (diagram from 

1104 


Espitalié et al., 1986). 

1105 


 

1106 


Fig. 4. Photomicrographs of macerals. A) WS-3, reflected natural light. 

1107 


Vitrinite particles : telocollinite (Vt) and desmocollinite (Vd). B) Same 

1108 


zone as A, blue light fluorescence emphasizing exinite particles: 

1109 


fluorescing spores (S) and cuticles (C). C) SKT-E, blue light 

1110 


fluorescence. Exinite particles: fluorescing spores (S) and resinite (R) 

1111 


filling conducting canals in a vitrinite particle. D) WS-3, reflected 

1112 


natural light. Pyrofusinite (P) and spores (S) in a vitrinite (V) 

1113 


groundmass. 

1114 


 

1115 


Romero-Sarmiento et al., 

51

Fig. 5. Total ion current chromatograms of the aliphatic fraction from 

1116 

coal extracts. Numbers above symbols denote to carbon number of n-



1117 

alkane 


1118 

 

1119 


Fig. 6. Mass chromatograms m/z 57 of aliphatic fractions from coal 

1120 


samples, showing the distribution of n-alkanes, isoprenoids and 

1121 


branched alkanes. Numbers above symbols indicate carbon number. 

1122 


 

1123 


Fig. 7. Plot of Pr/n-C

17

 vs. Ph/n-C



18

 for Scottish coals (diagram from 

1124 

Hunt, 1995). 



1125 

 

1126 



Fig. 8. Mass chromatograms m/z 191 of aliphatic fractions from coal 

1127 


samples, showing the distribution of hopanes and moretanes. Numbers 

1128 


above symbols indicate carbon number. The molecular structure 

1129 


represents the standard hopane skeleton. 

1130 


 

1131 


Fig. 9. Mass chromatograms m/z 217 of aliphatic fractions from coal 

1132 


samples, showing the distribution of steroids. Numbers above symbols 

1133 


indicate carbon number. 

1134 


 

1135 


Fig. 10. Steroids ternary plot. The contributions of C

27

, C



28

 and C


29

 

1136 



steranes were calculated using the peak height of ααα (20R) and αββ 

1137 


(20S) isomers on m/z 217 fragmentograms. Paleoenvironmental and 

1138 


source interpretation from Huang and Meinschein (1979). 

1139 


Romero-Sarmiento et al., 

52

 



1140 

Fig. 11. Partial m/z 109 + 123 + 179 + 193 mass fragmentograms 

1141 


showing the distribution of bicyclic alkanes (+) in the extracts of 

1142 


Scottish coals. Peak assignments in Table 3. Numbers denote carbon 

1143 


number. 

1144 


 

1145 


Fig. 12. Partial m/z 109 + 123 + 193 + 233 mass fragmentograms 

1146 


showing the distribution of diterpenoid hydrocarbons (o) in the extracts 

1147 


of Scottish coals. Peak assignments in Table 4. Numbers denote carbon 

1148 


number. (A) Mass spectrum of compound identified as C

18

 tricyclic 



1149 

hydrocarbon (Peak II). 

1150 

 

1151 



Fig. 13. Total ion current chromatograms of aromatic fraction from 

1152 


extracts of two selected coal samples. Peak assignments in Table 5 

1153 


Abbreviations: MN – methylnaphthalene; EN + DMN – ethyl- and 

1154 


dimethylnaphthalene; DBF – dibenzofuran; TMN – 

1155 


trimethylnaphthalene; MDBF – methyldibenzofuran; TeMN – 

1156 


tetramethylnaphthalene; DMDBF – dimethyldibenzofuran; P – 

1157 


phenanthrene; PMN – pentamethylnaphthalene; MP – 

1158 


methylphenanthrene; EP + DMP – ethyl– and dimethylphenanthrene; 

1159 


PAHs – polycyclic aromatic hydrocarbons; X – contaminant 

1160 


(polysiloxanes). 

1161 


 

1162 


Romero-Sarmiento et al., 

53

Fig. 14. Partial m/z 142+156 mass fragmentograms showing the 

1163 

distribution of methyl-; ethyl- and dimethylnaphthalene isomers in the 



1164 

aromatic fractions of Scottish coals. Abbreviations: MN – 

1165 

methylnaphthalene; EN – ethylnaphthalene; DMN – 



1166 

dimethylnaphthalene. Peak assignments in Table 5. 

1167 

 

1168 



Fig. 15. Partial m/z 170 mass fragmentograms showing the 

1169 


distribution of trimethylnaphthalene (TMN) isomers in the aromatic 

1170 


fractions of Scottish coals. 

1171 


 

1172 


Fig. 16. Partial m/z 184 mass fragmentograms showing the 

1173 


distribution of tretramethylnaphthalene (TeMN) isomers in the aromatic 

1174 


fractions of Scottish coals. 

1175 


 

1176 


Fig. 17. Partial m/z 178+192 mass fragmentograms showing the 

1177 


distribution of phenanthrene (P), anthracene (A), methylphenanthrene 

1178 


(MP) and methylanthracene (MA) isomers in the aromatic fractions of 

1179 


Scottish coals. 

1180 


 

1181 


Fig. 18. Partial m/z 206 mass fragmentograms showing the 

1182 


distribution of ethyl- and dimethylphenanthrene isomers in the 

1183 


aromatic fractions of Scottish coals. Abbreviations: EP – 

1184 


ethylphenanthrene, DMP – dimethylphenanthrene. 

1185 


 

1186 


Romero-Sarmiento et al., 

54

Fig. 19. Partial m/z 155 + 169 + 183 mass fragmentograms showing a 

1187 

series of C



17

 to C


19

 isohexylalkylnaphthalenes in the aromatic fractions 

1188 

of Scottish coals. Peak assignments in Table 5. Abbreviations: iHMN – 



1189 

isohexylalkylnaphthalene, PMN – pentamethylnaphthalene, DMP – 

1190 

dimethylphenanthrene. 



1191 

 

1192 



Fig. 20. Partial m/z 237 and m/z 223 mass fragmentograms showing 

1193 


the distribution of diaromatic tricyclic hydrocarbons in the aromatic 

1194 


fractions of Scottish coals. Abbreviations: Sim – simonellite, To – 

1195 


diaromatic tricyclic totarane, Semp – diaromatic tricyclic sempervirane, 

1196 


Tre - tetrahydroretene. Peak assignments in Table 5. Mass spectra of 

1197 


the two tentatively identified tetrahydroretene-derived isomers are also 

1198 


showed shown (Tre

1

 and Tre



2

). 


1199 

 

1200 



Table captions 

1201 


Table 1 

1202 


Bulk and molecular geochemical parameters from Scottish coals. 

1203 


 

1204 


Table 2 

1205 


Petrographic composition and vitrinite reflectance. 

1206 


 

1207 


Table 3 

1208 


Bicyclic alkanes identified. 

1209 


 

1210 


Romero-Sarmiento et al., 

55

Table 4 

1211 

Diterpenoid hydrocarbons identified. 



1212 

 

1213 



Table 5 

1214 


Aromatic hydrocarbons identified.  

1215 


 

1216 


Table 6 

1217 


Maturity indicators from aromatic fractions of Carboniferous coal 

1218 


samples. 

1219 


 

1220 


Table 7 

1221 


List of target saturated and aromatic land plant biomarkers and their 

1222 


origin. 

1223 


 

1224 


Appendix  

1225 


Mass spectra of unknown compounds (Peak assignments in Tables 2 

1226 


and 3). 

1227 


 

1228 


Edinburgh

U.K


Midland Valley

of Scotland

Glasgow


Skateraw Bay

White Sand Bay

Carboniferous

Sampling location

Southern


Uplands

Fault


Highland

Boundary


Fault

Permian


Bashkirian - Kasimovian

Serpukhovian

Tournaisian - Visean

Carboniferous volcanic rocks

Late Devonian

Ordovician - Early Devonian

0

200 Km


N

700000


250000

650000


600000

350000


300000

Dunbar

Barness East Limestone

Geological members

STRATIGRAPHY

Succession Samples

Chapel Point Limestone



Horizon SC2 (Spinner and Clayton, 1973)

Upper Skateraw Limestone

Middle Skateraw Limestone

Lower Skateraw Limestone

Upper Longcraig Limestone

Middle Longcraig Limestone



Longcraig coal (Spinner, 1969)

SKT-E


SKT-D

WS-2


WS-3

10 m


Limestone

Coal


Shale, siltstone and sandstone

400

150


420 440 460 480 500 520

300


450

600


750

900


0

Type I


Type II

Type III


HI

(mgHC/g


T

OC)


Tmax (°C)

Oil


Wet gas

Immature


540

SKT-E


SKT-D

WS-2


WS-3

C

S

Vt



Vd

S

S



R

P

A



B

C

D



V

S

Fig. 4. Photomicrographs of macerals A) WS-3, reflected natural light. Vitrinite particles : 

telocollinite (Vt) and desmocollinite (Vd). B) Same zone as A, blue light fluorescence 

emphasizing exinite particles: fluorescing spores (S) and cuticles (C). C) SKT-E, blue light 

fluorescence. Exinite particles: fluorescing spores (S) and resinite (R) filling conducting 

canals in a vitrinite particle. D) WS-3, reflected natural light. Pyrofusinite (P) and spores (S) 

in a vitrinite (V) groundmass.


SKT-E

SKT-D


Pr

Pr

Ph



Ph

Npr


Npr

18

18



19

19

20



20

27

29



29

27

16



16

13

13



WS-2

WS-3


Pr

Pr

Ph



Npr

18

19 20



29

29

27



27

16

13



Ph

Npr


18

19

20



16

34

36



38

40

20



42

22

44



24

46

50



56

26

48



54

52

28



30

32

Retention time (mins)



58

18

16



13

14

n-alkanes

regular isoprenoids

steroids


Npr norpristane

branched alkanes

Pr pristane

Ph phytane

bicyclic alkanes

hopanoids

diterpenoids

contaminant

X

X

X



X

SKT-E

SKT-D


WS-2

WS-3


Pr

Ph

Npr



18

19

25



27

29

31



19

25

27



29

31

19



25

27

29



31

19

25



27

29

31



Pr

Pr

33



Ph

18

Ph



18

Ph

18



Npr

Npr


Npr

16

16



16

16

Pr



16

16

16



16

15

15



12

12

12



12

15

15



34

14

36



16

38

18



40

20

42



22

44

24



46

50

26



48

52

28



30

32

Retention time (mins)



n-alkanes

regular isoprenoids

Npr norpristane

branched alkanes

Pr pristane

Ph phytane



SKT-E

SKT-D


WS-2

WS-3


Marine

Type


II

kerogen


Mixed

Type


II/III

kerogen


Terrestrial

Type


III

kerogen


10.0

1.0


0.1

0.1


1.0

10.0


Reducing

Oxidizing

Ph/ -C

n

18

Pr/



-C

n

17


29

R

31



S

31

30



29

30

αβ hopanes



ββ

nes


hopa

βα moretanes

Tm

27

27



29

28

SKT-E



SKT-D

WS-2


45

50

55



60

WS-3


Retention Time (min)

29 30


Tm

27

R



31

S

R



R

31

S



S

32

32



30

29

29



27

28

29



30

Tm

27



R

31

S



R

31

S



32

30

29



29

27

28



29

30

Tm



27

R

31



S

R

31



S

32

30



29

29

27



28

R

R



R

R

R



R

R

R



32

32

32



32

33

33



33

33

S



S

S

S



S

S

S



S

βα

αββ


αβ















ααα



WS-2

WS-3


29

29

29



29

29

29



29

29

28



28

28

28



27

27

27



27

R

R



R

R

R



R

R

R



R

R

R



R

S

S



S

S

S



S

S

S



S

S

S



S

S

S



S

S

R



R

R

R



R

R

R



R

S

S



S

S

S



S

S

S



S

S

S



S

S

S



S

S

S



S

S

S



R

R

R



R

27

27



20

20

20



20

20

20



21

21

21



21

21

21



21

21

22



22

22

22



19

19

19



19

27

27



28

28

28



28

22

24



26

32

40



50

28

34



42

52

30



38

48

36



46

44

54



Retention Time (min)

SKT-D


Steranes

Diasteranes

Short chain

SKT-E


Estuarine/bay

Terrestrial

Open marine

Lacustrine

Higher-

plants


Higher-

plants


Zoo-

plankton


C

27

C



29

C

28



Phyto-

plankton


Phyto-

plankton


SKT-E

SKT-D


WS-2

WS-3


Phyto-

plankton


Higher-

plants


15

15

15



15

14

14



14

14

16



16

16

16



SKT-D

SKT-E


Retention Time (mins)

16

15



17

18

19



20

21

WS-2



WS-3

50

50



50

50

100



100

100


100

Relative


abundance

Relative


abundance

Relative


abundance

Relative


abundance

a

a



a

a

b



b

b

b



c

c

c



c

d

d



d

d

e



e

e

e



f

f

f



f

j

j



j

j

h



h

h

h



k

k

k



k

l

l



l

p

p



p

p

m



m

m

m



q

q

q



q

n

n



n

n

o



o

o

o



g

g

g



g

i

i



i

i


19

19

19



19

18

18



18

18

20



20

20

20



SKT-D

SKT-E


Retention Time (mins)

25

29



27

31

32



24

28

26



30

WS-2


WS-3

50

50



50

50

100



100

100


100

Relative


abundance

Relative


abundance

Relative


abundance

Relative


abundance

I

I



I

I

III



III

III


III

IV

IV



IV

IV

V



V

V

V



VI

VI

VI



VI

VII


VII

VII


VII

VIII


VIII

VIII


VIII

IX

IX



IX

IX

X



X

X

X



XI

XI

XI



XI

XII


XII

XII


XII

XVIII


XVIII

XVIII


XVIII

XIII


XIII

XIII


XIII

XV

XV



XV

XV

XVI



XIV

XIV


XIV

XIV


XVI

XVI


XVI

XVII


XVII

XVII


XVII

II

(A)



II

II

II



?

?

?



20

40

60



80

100


50

100


200

150


250

248


193

109


95

81

69



55

123


137

149


163 177

206 220


233

m/z


Relative

abundance



16

30

24



38

18

32



26

40

20



34

28

14



22

36

Retention



T

ime


(mins)

Relativeabundance

Relativeabundance

WS-3


1

1

2



2

X

X



X

X

X



X

4

5



5

6

6



7

8

8



9

9

10



10

11

11



12

12

13



13

14

15



17

17

18



18

19

19



27

27

28



28

29

29



30

30

31



31

32

32



33

33

34



34

35

35



36

36

37



37

40

40



41

41

44



44

42

42



43

43

39



39

38

38



45

45

46



46

47

47



48

48

49



49

50

50



51

51

52



52

53

53



54

54

55



55

57

57



58

58

59



59

60

60



66

66

65



65

61

61



62

62

64



63

63

67



67

68

68



69

69

70



70

72

72



73

73

75



75

74

74



76

76

77



77

84

84



87

87

88



88

89

89



90

90

91



91

92

92



93

93

94



94

97

97



96

96

95



95

78-83


78-83

85-


86

85-


86

71

71



56

56

26



26

25

25



24

24

23



23

22

22



21

21

20



20

16

16



15

14

7



4

3

3



MN

MN

PMN



PMN

MP

MP



EP+DMP

others


P

AHs


others

P

AHs



EP+DMP

P

P



MDBF

DMDBF


DMDBF

MDBF


EN+DMN

TMN


TMN

T

eMN



T

eMN


DBF

DBF


EN+DMN

SKT


-E

O

O



O

O

O



O

SKT-E

SKT-D


WS-2

WS-3


2-EN

2-EN


2-EN

2-EN


1-EN

1-EN


1-EN

1-EN


2,6-+2,7-DMN

2,6-+2,7-DMN

2,6-+2,7-DMN

2,6-+2,7-DMN

1,3-+1,7-DMN

1,3-+1,7-DMN

1,3-+1,7-DMN

1,3-+1,7-DMN

1,4-+2,3-DMN

1,4-+2,3-DMN

1,4-+2,3-DMN

1,4-+2,3-DMN

1,6-DMN

1,6-DMN


1,6-DMN

1,6-DMN


1,5-DMN

1,5-DMN


1,5-DMN

1,5-DMN


1,2-DMN

1,2-DMN


1,2-DMN

1,2-DMN


16,0

17,5


14,5

15,5


17,0

14,0


15,0

16,5


13,5

Retention Time (mins)

1-MN

1-MN


1-MN

1-MN


2-MN

2-MN


2-MN

2-MN


1

2

7



8

9

10



11

12

13



14

50

50



50

50

100



100

100


100

Relative


abundance

Relative


abundance

Relative


abundance

Relative


abundance

1,3,6-TMN

1,3,6-TMN

1,3,6-TMN

1,3,6-TMN

1,2,7-TMN

1,2,7-TMN

1,2,7-TMN

1,2,7-TMN

1,6,7-TMN

1,6,7-TMN

1,6,7-TMN

1,6,7-TMN

1,2,4-TMN

1,2,4-TMN

1,2,4-TMN

1,2,4-TMN

1,2,5-TMN

1,2,5-TMN

1,2,5-TMN

1,2,5-TMN

1,2,6-TMN

1,2,6-TMN

1,2,6-TMN

1,2,6-TMN

2,3,6-TMN

2,3,6-TMN

2,3,6-TMN

2,3,6-TMN

1,4,6-+1,3,5-TMN

1,4,6-+1,3,5-TMN

1,4,6-+1,3,5-TMN

1,4,6-+1,3,5-TMN

1,3,7-TMN

1,3,7-TMN

1,3,7-TMN

1,3,7-TMN

18,6

18,8


18,4

18,2


18,0

19,0


19,2

19,4


19,6

19,8


20,0

20,2


20,4

Retention Time (mins)

SKT-E

SKT-D


WS-2

WS-3


1,3,6,7-TeMN

1,3,6,7-TeMN

1,3,6,7-TeMN

1,3,6,7-TeMN

1,2,3,6-TeMN

1,2,3,6-TeMN

1,2,3,6-TeMN

1,2,3,6-TeMN

2,3,6,7-TeMN

2,3,6,7-TeMN

2,3,6,7-TeMN

2,3,6,7-TeMN

1,2,6,7-TeMN

1,2,6,7-TeMN

1,2,6,7-TeMN

1,2,6,7-TeMN

1,2,4,6-+1,2,4,7-

+1,4,6,7-TeMN

1,2,4,6-+1,2,4,7-

+1,4,6,7-TeMN

1,2,4,6-+1,2,4,7-

+1,4,6,7-TeMN

1,2,4,6-+1,2,4,7-

+1,4,6,7-TeMN

1,2,3,7-TeMN

1,2,3,7-TeMN

1,2,3,7-TeMN

1,2,3,7-TeMN

1,2,5,7-TeMN

1,2,5,7-TeMN

1,2,5,7-TeMN

1,2,5,7-TeMN

1,3,5,7-TeMN

1,3,5,7-TeMN

1,3,5,7-TeMN

1,3,5,7-TeMN

1,2,5,6-+

1,2,3,5-TeMN

1,2,5,6-+

1,2,3,5-TeMN

1,2,5,6-+

1,2,3,5-TeMN

1,2,5,6-+

1,2,3,5-TeMN

21,0

22,0


23,0

24,0


Retention Time (mins)

SKT-E


SKT-D

WS-2


WS-3

P

P

P



P

A

A



A

A

3-MP



3-MP

3-MP


3-MP

9-MP


9-MP

9-MP


9-MP

1-MP


1-MP

1-MP


1-MP

2-MP


2-MP

2-MP


2-MP

2-MA


2-MA

2-MA


2-MA

23

24



25

26

27



28

29

Retention Time (mins)



SKT-E

SKT-D


WS-2

WS-3


3-EP

3-EP


3-EP

3-EP


1-EP

1-EP


1-EP

1-EP


9-+2-EP

9-+2-EP


9-+2-EP

9-+2-EP


1,6-+2,9-+2,5-DMP

1,6-+2,9-+2,5-DMP

1,6-+2,9-+2,5-DMP

1,6-+2,9-+2,5-DMP

3,5-+2,6-DMP

3,5-+2,6-DMP

3,5-+2,6-DMP

3,5-+2,6-DMP

1,3-+3,9-+

2,10-+3,10-DMP

1,3-+3,9-+

2,10-+3,10-DMP

1,3-+3,9-+

2,10-+3,10-DMP

1,3-+3,9-+

2,10-+3,10-DMP

1,9-+4,9-+4,10-DMP

1,9-+4,9-+4,10-DMP

1,9-+4,9-+4,10-DMP

1,9-+4,9-+4,10-DMP

1,7-DMP

1,7-DMP


1,7-DMP

1,7-DMP


2,7-DMP

2,7-DMP


2,7-DMP

2,7-DMP


1,8-DMP

1,8-DMP


1,8-DMP

1,8-DMP


2,3-DMP

2,3-DMP


2,3-DMP

2,3-DMP


29,0

30,0


31,0

32,0


Retention Time (mins)

SKT-E


SKT-D

WS-2


WS-3

1,7-DMP

1,2,3,5,6-PMN

C iHMN

19

C iHMN



18

C iHMN


17

26,0


27,0

28,0


29,0

30,0


31,0

32,0


33,0

Retention Time (mins)

SKT-E

SKT-D


WS-2

WS-3


48

48

48



48

51

51



51

51

56



56

56

56



66

66

66



66

73

73



73

73

Relative



abundance

WS-3

SKT-E


Tre

Tre


m/z 223

m/z 223


m/z 237

m/z 237


Sim

Sim


To

To

Semp



Semp

Tre ?


1

Tre ?


1

Tre ?


1

Tre ?


2

Tre ?


2

Tre ?


2

30,0


30,0

30,0


30,0

20

20



20

20

20



20

40

40



40

40

40



40

60

60



60

60

60



60

80

80



80

80

80



80

100


100

100


100

100


100

31,0


31,0

50

50



100

100


200

200


150

150


250

250


223

223


238

238


103111

208


208

153


168

195


193

89

109



89

165 179


179

152


31,0

31,0


32,0

32,0


32,0

32,0


33,0

33,0


33,0

33,0


36,0

36,0


34,0

34,0


34,0

34,0


37,0

37,0


35,0

35,0


35,0

35,0


38,0

38,0


Retention Time (mins)

Retention Time (mins)

m/z

m/z


Retention Time (mins)

Retention Time (mins)

70

70

74



74

76

76



90

90

77



77

Relative


abundance

Relative


abundance

Relative


abundance

Relative


abundance

Relative


abundance

Relative


abundance

Peak e: C bicyclic alkane?

14

Peak a: C bicyclic alkane?

14

Peak f: C bicyclic alkane?

15

Peak h: C bicyclic alkane?

15

Peak III: C

?

18



tricyclic hydrocarbon

Peak I: C tricyclic hydrocarbon?

18

Peak IV: C

?

18

tricyclic hydrocarbon



Peak V: C

18

tricyclic hydrocarbon?



Peak VII: C

?

18



tricyclic hydrocarbon

Peak VI: C tricyclic hydrocarbon?

18

Peak VIII: C

?

19

tricyclic hydrocarbon



Peak IX: C

19

tricyclic hydrocarbon?



Peak XI: C

?

20



tetracyclic diterpenoid

Peak X: C tretracyclic diterpenoid?

20

Peak XVIII: C



?

20

tetracyclic diterpenoid



Document Outline

  • Figures.pdf
    • Fig 1 Location map
    • Fig 2 The geological successi..
    • Fig 3 Plot of HI vs Tmax valu..
    • Figure4
    • Fig 5 TIC coals
    • Fig 6 mz 57 Coals
    • Fig 7 Plot PrC17-PhC18
    • Fig 8 mz 191 Hopanes coals
    • Fig 9 Diasteranes & Steranes
    • Fig 10 Steroids ternary plot
    • Fig 11 Bicyclic alkane
    • Fig 12 Tricyclic and tetracyc..
    • Fig 13 Partial TIC Aromatic F..
    • Fig 14 mz 142+156 Coals
    • Fig 15 mz 170 Coals
    • Fig 16 mz 184 Coals
    • Fig 17 mz 178+192 Coals
    • Fig 18 mz 206 Coals
    • Fig 19 mz 155+169+183 Coals
    • Fig 20 mz 237 and mz 223 Coal..

Download 496.38 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling