Romero-Sarmiento et al
Download 496.38 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- Figure captions
- Table captions
- Table 4
- Dunbar Barness East Limestone Geological members STRATIGRAPHY
- Longcraig coal (Spinner, 1969)
- Peak e
- Peak V
- Peak XI
6. Conclusions 693
Numerous land-plant biomarkers have been identified in the 694
aliphatic and aromatic fraction of the extracts of Early Carboniferous 695
Romero-Sarmiento et al., 33 coals from Scotland. Among these compounds, several have been 696 classically considered to be conifer-derived. However, micro and 697 macrofossil evidence for conifers does not go further back than the 698 Upper Carboniferous while palynological and palaeobotanical data 699 indicate that these coals mainly derive from arborescent lycopsid 700 (Lepidodendrales)-dominated forest. This discrepancy between the lipid 701 and other fossil records leads to the following hypotheses: 702 1.
Conifers had evolved already in the Early Carboniferous and this 703
has now been evidenced with lipids. 704
2.
The metabolic pathways giving rise to the observed biomarkers 705 had evolved already in the Early Carboniferous in plants which 706 are related to the conifers. 707 3.
The identified biomarkers are derived from terrestrial plants 708
which are not closely related to the conifers. This implies the 709
evolution of a separate, possibly extinct, or as yet unidentified 710
metabolic pathway for these and associated products. 711
An argument for hypothesis 3 is that retene, simonellite and 712
tetrahydroretene – which are generally related to conifers – could also 713
derive from the degradation of kaurane-type compounds synthesised by 714
the early bryophytes. The Lower Carboniferous Scottish coals can be 715
related to a flora dominated by arborescent lycopsids in conjunction 716
with some ferns, sphenopsids and pteridosperms. Among these plants 717
which are presently extinct, pteridosperms, which are relatively closely 718
related to conifers, and arborescent lycopsids, which are not related to 719
Romero-Sarmiento et al., 34 conifers, appear as the best possible sources for the “typical conifer” 720 biomarkers. Therefore hypotheses 2 and 3 seem the most likely at 721 present. 722
723 Acknowledgements 724
The authors acknowledge financial support from the “ECLIPSE II 725
and INSU 2009 – Terrestrialization” grant from the INSU department of 726
CNRS. Thanks are extended to Dr. Charles Wellman (Department of 727
Animal and Plant Sciences, University of Sheffield, U.K.) for guidance 728
and assistance to M.V. during field work; this latter was funded by an 729
exchange grant from “EGIDE Programme d'Actions Intégrées franco- 730
britanniques ALLIANCE” of the British Council and the Ministère des 731
Affaires Étrangères of France, which is also gratefully acknowledged. M- 732
F. R-S. acknowledges receipt of a scholarship (No. E07D402105VE) 733
from the Programme Alβan. G. J. M.V. benefited from a position as 734
invited professor at the Université Lille 1 (France) and a Heisenberg 735
Stipend by the German Science Foundation (DFG). The authors are 736
grateful to François Baudin (Université Paris 6) for performing the Rock- 737
Eval and LECO analyses and to Brigitte Meyer-Berthaud (CNRS- 738
UMR0931 AMAP) for helpful discussions in palaeobotany. This is a 739
contribution to the ANR project “Global Perspectives on the 740
Terrestrialization Process”. The editor Finn Surlyk, Jørgen A. Bojesen- 741
Koefoed, and an anonymous reviewer are acknowledged for constructive 742
comments on the manuscript. 743
Romero-Sarmiento et al., 35
744 References 745
Achari, R.G., Shaw, G., Holleyhead, R., 1973. Identification of ionene 746
and other carotenoid degradation products from the pyrolysis of 747
sporopollenins derived from some pollen exines, a spore coal and 748
the Green River shale. Chemical Geology 12, 229 – 234. 749
Alexander, R., Kagi, R.I., Rowland, S.J., Sheppard, P.N., Chirila, T.V., 750
1985. The effects of thermal maturity on distribution of 751
dimethylnaphthalenes and trimethylnaphthalenes in some ancient 752
sediments and petroleums. Geochimica et Cosmochimica Acta 49, 753
385 – 395. 754
Armstroff, A., Wilkes, H., Schwarzbauer, J., Littke, R, Horsfield, B., 755
2006. Aromatic hydrocarbon biomarkers in terrestrial organic 756
matter of Devonian to Permian age. Palaeogeography, 757
Palaeoclimatology, Palaeoecology, 240, 253 – 274. 758
Arouri, K.R., Greenwood, P.F., Walter, M.R., 2000. Biological affinities of 759
Neoproterozoic acritarchs from Australia: microscopic and chemical 760
characterisation Organic Geochemistry 31, 75 – 89 761
Asakawa, Y., 2004. Chemosystematics of the Hepaticae. Phytochemistry 762
65, 623 – 669. 763
Auras, S., Wilde, V., Scheffler, K., Hoernes, S., Kerp, H., Püttmann, W., 764
2006. Aromatized arborane/fernane hydrocarbons as biomarkers 765
for Cordaites. Naturwissenschaften 93, 616 – 621. 766
Romero-Sarmiento et al., 36 Bastow, T., Alexander, R., Sosrowidjojo, I. B., Kagi, R.I., 1998. 767 Pentamethylnaphthalenes and related compounds in sedimentary 768 organic matter. Organic Geochemistry 28, 585 – 595. 769 Bastow, T., Singh, R., Van Aarssen, B., Alexander, R., Kagi, R. 2001. 2- 770 methylretene in sedimentary material: a new higher plant 771 biomarker. Organic Geochemistry 32: 1211 – 1217. 772 Bechtel, A., Sachsenhofer, R.F., Zdravkov, A., Kostova, I., Gratzer, R., 773 2005. Influence of floral assemblage, facies and diagenesis on 774 petrography and organic geochemistry of the Eocene Bourgas coal 775 and the Miocene Maritza-East lignite (Bulgaria). Organic 776 Geochemistry 36, 1498 – 1522. 777 Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to 778 recognition of source beds. Geochimica et Cosmochimica Acta 22, 2 779 – 15.
780 Bray, P.S., Anderson, K.B., 2009. Identification of Carboniferous (320 781 Million Years Old) Class Ic Amber. Science 326, 132 – 134. 782 Brocks, J.J., Logan, G.A., Buick, R., Summons, R.E., 1999. Archean 783 molecular fossils and the early rise of Eukaryotes. Science 285, 784 1033 – 1036. 785 Brocks, J.J., Buick, R., Summons, R.E., Logan, G.A., 2003. A 786 reconstruction of Archean biological diversity based on molecular 787 fossils from the 2.78 to 2.45 billion-year-old Mount Bruce 788 Supergroup, Hamersley Basin, Western Australia. Geochimica et 789 Cosmochimica Acta 67, 4321 – 4335. 790 Romero-Sarmiento et al., 37 Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan, G.A., 791 Bowden, S.A., 2005. Biomarker evidence for green and purple 792 sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 793 866 – 870. 794 Chopra, R.N., Kumra, K.P., 1988. Biology of Bryophytes. John Wiley & 795 Sons, New York, 350 p. 796 Clarkson, C., Campbell, W.E., Smith, P., 2003. In vitro antiplasmodial 797 activity of abietane and totarane diterpenes isolated from 798
799
724. 800
Cox, R.E., Yamamoto, S., Otto, A., Simoneit, B.R.T., 2007. Oxygenated 801
di- and tricyclic diterpenoids of southern hemisphere conifers. 802
Biochemical Systematics and Ecology 35, 342 – 362. 803
Day, W.C., Erdman, J.G., 1963. Ionene: a thermal degradation product 804
of β-carotene. Science 141, 808. 805
del Río, J. C., Garcia-Molla, J., González-Vila, F. J., Martin, F., 1994. 806
Composition and origin of the aliphatic extractable hydrocarbons in 807
the Puertollano (Spain) oil shale. Organic Geochemistry, 21, 897 – 808
909. 809
DiMichele W.A., 1980. Paralycopodites Morey & Morey, from the 810
Carboniferous of Euramerica — A Reassessment of Generic 811
Affinities and Evolution of "Lepidodendron" brevifolium Williamson. 812
American Journal of Botany 67, 1466 – 1476. 813
Romero-Sarmiento et al., 38 DiMichele, W.A., Phillips, T.L., 1994. Paleobotanical and paleoecological 814 constraints on models of peat formation in the Late Carboniferous 815 of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 816 106, 39 – 90. 817 Dimitrova, T.K., Cleal, C.J., Thomas, B.A., 2005. Palynology of late 818 Westphalian-early Stephanian coal-bearing deposits in the eastern 819 South Wales Coalfield. Geological Magazine 142, 809 – 821. 820 Disnar, J.R., Harouna, M., 1994. Biological origin of tetra-cyclic 821 diterpanes, n-alkanes and other biomarkers found in Lower 822 Carboniferous Gondwana coals (Niger). Organic Geochemistry 21, 823 143 – 152. 824 Dzou, L.I.P., Noble, R.A., Senftle, J.T., 1995. Maturation effects on 825 absolute biomarker concentration in a suite of coals and associated 826 vitrinite concentrates. Organic Geochemistry 23, 681 – 697. 827 Eble, C.F., 1996. Lower and lower Middle Pennsylvanian coal 828 palynofloras, southwestern Virginia. International Journal of Coal 829 Geology 31, 67 – 113. 830 Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science 831 156, 1322 – 1335. 832 Eglinton, T.I., Eglinton, G., 2008. Molecular proxies for 833 paleoclimatology. Earth and Planetary Science Letters 275, 1 – 16. 834 Eigenbrode, J.L., Freeman, K.H., Summons, R.E., 2008. Methylhopane 835 biomarker hydrocarbons in Hamersley Province sediments provide 836 Romero-Sarmiento et al., 39 evidence for Neoarchean aerobiosis. Earth and Planetary Science 837 Letters 273, 323 – 331. 838 Ellis, L., Singh, R., Alexander, R., Kagi, R., 1996. Formation of isohexyl 839 alkylaromatic hydrocarbons from aromatization-rearrangement of 840 terpenoids in the sedimentary environment: A new class of 841 biomarker. Geochimica and Cosmochimica Acta 60, 4747 – 4763. 842 Espitalié, J., Deroo, G., Marquis, F., 1986. La pyrolyse Rock-Eval et ses 843 applications. Revue de l'Institut Français du Pétrole 41, 73 – 89. 844 Fabianska, M. J., Bzowska, G., Matuszewska, A., Racka, A., Skret, U., 845 2003. Gas chromatography-mass spectrometry in geochemical 846 investigation of organic matter of the Grodziec Beds (Upper 847 Carboniferous), Upper Silesian Coal Basin, Poland. Geochemistry 848 63, 63 – 91. 849 Falcon-Lang, H. J., 2000. Fire ecology of the Carboniferous tropical 850 zone. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 339 – 851 355.
852 Fleck, S., Michels, R., Izart, A., Elie, M., Landais, P., 2001. 853 Palaeoenvironmental assessment of Westphalian fluvio–lacustrine 854 deposits of Lorraine (France) using a combination of organic 855 geochemistry and sedimentology. International Journal of Coal 856 Geology 48, 65 – 88. 857 Fleck, S., Michels, R., Ferry, S., Malartre, F., Elion, P., Landais, P., 858 2002. Organic geochemistry in a sequence stratigraphic framework. 859
Romero-Sarmiento et al., 40 The siliciclastic shelf environment of Cretaceous series, SE France. 860 Organic Geochemistry 33, 1533 – 1557. 861 Fowler, M.G., Goodarzi, F., Gentzis, T., Brooks, P.W., 1991. 862 Hydrocarbon potential of Middle and Upper Devonian coals from 863 Melville Island, Arctic Canada. Organic Geochemistry 17, 681 – 864 694.
865 George, S.C., 1992. Effect of igneous intrusion on the organic 866 geochemistry of a siltstone and an oil shale horizon in the Midland 867 Valley of Scotland. Organic Geochemistry 18, 705 – 723. 868 Glasspool, I.J., Hemsley, A.R., Scott, A.C., Golitsyn, A., 2000. 869 Ultrastructure and affinity of Lower Carboniferous megaspores 870 from the Moscow Basin, Russia. Review of Palaeobotany and 871 Palynology 109, 1 – 31. 872 Hautevelle, Y., Michels, R., Malartre, F., Trouiller, A., 2006. Vascular 873 plant biomarkers as proxies for palaeoflora and palaeoclimatic 874 changes at the Dogger/Malm transition of the Paris Basin (France). 875 Organic Geochemistry 37, 610 – 625. 876 Huang, W.-Y., Meinschein, W.G., 1979. Sterols as ecological indicators. 877 Geochimica et Cosmochimica Acta 43,739 – 745. 878 Hunt, J.M., 1995. Petroleum Geochemistry and Geology. W.H. Freeman 879 and Co., New York. 880 Iinuma, Y., E. Brüggemann, T. Gnauk, K. Müller, M. O. Andreae, G. 881 Helas, R. Parmar, and H. Herrmann, 2007. Source characterization 882 of biomass burning particles: The combustion of selected European 883 Romero-Sarmiento et al., 41 conifers, African hardwood, savanna grass, and German and 884 Indonesian peat, Journal of Geophysical Research, 112, D08209. 885 International Committee of Coal Petrology (ICCP), 1975. International 886 Handbook for Coal Petrology, 2nd ed., CNRS, Paris. 887 Izart, A., Sachsenhofer, R. F., Privalov, V. A., Elie, M., Panova, E. A., 888 Antsiferov, V. A., Alsaab, D., Rainer, T., Sotirov, A., Zdravkov, A., 889 Zhykalyak, M. V., 2006. Stratigraphic distribution of macerals and 890 biomarkers in the Donets Basin: Implications for paleoecology, 891 paleoclimatology and eustacy. International Journal of Coal 892 Geology, 66, 69 – 107. 893 Jiang, C., Alexander, R., Kagi, R.I., Murray, A. P., 1998. Polycyclic 894 aromatic hydrocarbons in ancient sediments and their 895 relationships to palaeoclimate. Organic Geochemistry 29, 1721 – 896 1735.
897 Kashirtsev, V.A., Moskvin, V.I., Fomin, A.N., Chalaya, O.N., 2010. 898 Terpanes and steranes in coals of different genetic types in Siberia. 899 Russian Geology and Geophysics 51, 404 – 411. 900 Murchison D. G., Raymond A. C., 1989. Igneous activity and organic 901 maturation in the Midland Valley of Scotland. International Journal 902 of Coal Geology 14, 47-82. 903 Niklas, K.J., 1976a. The chemotaxonomy of Parka decipiens from the 904 lower old red sandstone, Scotland (U.K.). Review of Palaeobotany 905 and Palynology 21, 205 – 217. 906
Romero-Sarmiento et al., 42 Niklas, K.J., 1976b Chemotaxonomy of Prototaxites and evidence for 907 possible terrestrial adaptation. Review of Palaeobotany and 908 Palynology 22, 1 – 17. 909 Niklas, K.J., Chaloner, W.G., 1976. Chemotaxonomy of some 910 problematic palaeozoic plants. Review of Palaeobotany and 911 Palynology 22, 81 – 104 912 Niklas, K.J., Pratt, L.M., 1980. Evidence for lignin-like constituents in 913 early silurian (llandoverian) plant fossils. Science 209, 396 – 397. 914 Noble, R. A., 1986. A geochemical study of bicyclic alkanes and 915 diterpenoid hydrocarbons in crude oils, sediments and coals. 916 Thesis. The University of Western Australia. 398 p. 917 Noble, R. A., Alexander, R., Kagi R.I., Knox, J., 1985. Tetracyclic 918 diterpenoid hydrocarbons in some Australian coals, sediments and 919 crude oils. Geochimica and Cosmochimica Acta 49, 2141 – 2147. 920 Noble, R. A., Alexander, R., Kagi R.I., 1987. Configurational 921 isomerization in sedimentary bicyclic alkanes. Organic 922 Geochemistry 11, 151 – 156. 923 Olcott, A.N., 2007. The utility of lipid biomarkers as paleoenvironmental 924 indicators. Palaios 22, 111 – 113. 925 Opluštil, S, Bek, J, Schultka, S, 2009. Re-examination of the genus 926
927
Bulletin of Geosciences 85, 39 – 52. 928
Oros, D.R., Simoneit, B.R.T., 2001a. Identification and emission factors 929
of molecular tracers in organic aerosols from biomass burning Part 930
Romero-Sarmiento et al., 43 1. Temperate climate conifers. Applied Geochemistry 16, 1513 – 931 1544.
932 Oros, D.R., Simoneit, B.R.T., 2001b. Identification and emission factors 933 of molecular tracers in organic aerosols from biomass burning Part 934 2. Deciduous trees. Applied Geochemistry 16, 1545 – 1565. 935 Oros, D.R., Abas, M.R.b., Omar, N.Y.M.J., Rahman, N.A., Simoneit, 936 B.R.T., 2006. Identification and emission factors of molecular 937 tracers in organic aerosols from biomass burning: Part 3. Grasses. 938 Applied Geochemistry 21, 919 – 940. 939 Otto, A., Simoneit, B.R.D., 2001. Chemosystematics and diagenesis of 940 terpenoids in fossil conifer species and sediment from the Eocene 941 Zeitz Formation, Saxony, Germany. Geochimica et Cosmochimica 942 Acta 65, 3505 – 3527. 943 Otto, A., Wilde, V., 2001. Sesqui-, di- and triterpenoids as 944 chemosystematic markers in extant conifers - A review. The 945 Botanical Review 67, 141 – 238. 946 Otto, A., Walther, H., Püttmann, W., 1997. Sesqui- and diterpenoid 947 biomarkers preserved in Taxodium-rich Oligocene Oxbow Lake 948 Clays, Weisselster basin, Germany. Organic Geochemistry 26, 105 949 – 115.
950 Otto, A., Simoneit, B.R.T., Wilde, V., Kunzmann, L., Püttmann, W., 951 2002. Terpenoid composition of three fossil resins from Cretaceous 952 and Tertiary conifers. Review of Palaeobotany and Palynology 120, 953 203 – 215. 954 Romero-Sarmiento et al., 44 Ourisson, G., Albrecht, P., Rohmer, M., 1979. The hopanoids. 955 Palaeochemistry and biochemistry of a group of natural products. 956 Pure and Applied Chemistry 51, 709 – 729. 957 Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting 958 molecular fossils in petroleum and ancient sediments. Prentice 959 Hall, Englewood Cliffs, New Jersey. 363 p. 960 Peters, K.E., Walters, C.W., Moldowan, J.M., 2005. The Biomarker 961 Guide. Cambridge University Press. Cambridge -706 p. 962 Philp, R.P., 1985. Fossil Fuel Biomarkers Applications and Spectra. 963 Elsevier, Amsterdam. 964 Phillps, T., 1979. Reproduction of heterosporous arborescent lycopods 965 in the Mississippian - Pennsylvanian of Euramerica. Review of 966 Palaeobotany and Palynology 27, 239 – 289. 967 Pinto A.C., Zocher D.H.T., Rezende C.M., Gottlieb H.E., 1995. A new 968 diterpene with a totarane skeleton from Vellozia flavicans. Natural 969 Product Research 6, 209 – 213. 970 Radke, M., Willsch, H., Leythaeuser, D., 1982. Aromatic components of 971 coal: relation of distribution pattern to rank. Geochimica et 972 Cosmochimica Acta 46, 1831 – 1848. 973 Radke, M., Willsch, H., Welte, D.H., 1986. Maturity parameters based 974 on aromatic hydrocarbons: influence of the organic matter type. 975 Organic Geochemistry 10, 51 – 63. 976
Romero-Sarmiento et al., 45 Radke, M., Vriend, S. P., Ramanampisoa, L. R., 2000. 977 Alkyldibenzofurans in terrestrial rocks: Influence of organic facies 978 and maturation. Geochimica et Cosmochimica Acta 64, 275 – 286. 979 Rampen, S.W, Abbas, B.A., Schouten, S., Sinninghe Damsté, J.S., 980 2010. A comprehensive study of sterols in marine diatoms 981 (Bacillariophyta): Implications for their use as tracers for diatom 982 productivity. Limmonology and Oceanography 55, 91 – 105. 983 Romero-Sarmiento, M.F., Riboulleau, A., Vecoli, M., Versteegh., G., 984 2010. Occurrence of retene in upper Silurian – Lower Devonian 985 sediments from North Africa: Origin and implications. Organic 986 Geochemistry 41, 302 – 306. 987 Schulze, T., Michaelis, W., 1990. Structure and origin of terpenoid 988 hydrocarbons in some German coals. Organic Geochemistry 16, 989 1051 – 1058. 990 Scott, A., 1974. The earliest conifer. Nature 251, 707 – 708. 991 Scott, A.C., Hemsley, A. R., 1996. Palaeozoic megaspores. Chapter 18G. 992 In: Jansonius, J. & McGregor, D.C. (ed.) Palynology: principles and 993 applications. American Association of Stratigraphic Palynologists 994 Foundation, Vol. 2, 629 – 639. 995 Scott, A.C., Jones, T.P., 1994. The nature and influence of fire in 996 Carboniferous ecosystems. Palaeogeography, Palaeoclimatology, 997 Palaeoecology 106, 9 l – 112. 998 Scott, A.C., Galtier, J., Clayton, G., 1984. Distribution of anatomically- 999 preserved floras in the Lower Carboniferous in Western Europe. 1000
Romero-Sarmiento et al., 46 Transaction of the Royal Society of Edinburgh: Earth Sciences 75, 1001 311 – 340. 1002 Seifert, W.K., Moldowan, J.M., 1978. Applications of steranes, terpanes 1003 and monoaromatics to the maturation, migration and source of 1004 crude oils. Geochimica et Cosmochimica Acta 42, 77 – 95. 1005 Seifert, W.K., Moldowan, J.M., 1980. The effect of thermal stress on 1006 source rock quality as measured by hopane stereochemistry. In: 1007 Douglas, A.G., Maxwell, J.R. (Eds.), Advances in Organic 1008 Geochemistry, 1979. Pergamon Press, 229 – 237. 1009 Seifert, W.K., Moldowan, J.M., 1986. Use of biological markers in 1010 petroleum exploration. In: Johns, R.B. (Ed.), Biological Markers in 1011 the Sedimentary Record, Methods in Geochemistry and 1012 Geophysics, vol. 24. Elsevier, Amsterdam, pp. 261–290. 1013 Sheng, G., Simoneit, B. R. T., Leif, R. N., Chen, X., Fu, J., 1992. 1014 Tetracyclic terpanes enriched in Devonian cuticle humic coals. 1015 Fuel, 71, 523 – 532. 1016 Shiea, J., Brassell, S.C., Ward, D.M., 1990. Mid-chain branched mono- 1017 and dimethyl alkanes in hot spring cyanobacterial mats: a direct 1018 biogenic source for branched alkanes in ancient sediments? 1019 Organic Geochemistry 15, 223 – 231. 1020 Simoneit, B. R. T., Grimalt, J. O., Wang, T. G., Cox, R. E., Hatcher, P. 1021 G., Nissenbaum, A., 1986. Cyclic terpenoids of contemporary 1022 resinous plant detritus and of fossil woods, ambers and coals. 1023 Organic Geochemistry 10, 877 – 889. 1024
Romero-Sarmiento et al., 47 Spinner, E., 1969. Megaspore assemblages from Viséan deposits at 1025 Dunbar, East Lothian, Scotland. Palaeontology 12, 441 – 458. 1026 Spinner, E., Clayton, G., 1973. Viséan spore assemblages from 1027 Skateraw, East Lothian, Scotland. Pollen et Spores XV, 139 – 165. 1028 Stefanova, M., Markova, K., Marinov, S., Simoneit, B.R.T., 2005. 1029 Molecular indicators for coal-forming vegetation of the Miocene 1030 Chukurovo lignite, Bulgaria. Fuel 84, 1830 – 1838. 1031 Talyzina, N.M., Moldowan, J.M., Johannisson, A., Fago, F.J., 2000. 1032 Affinities of Early Cambrian acritarchs studied by using 1033 microscopy, fluorescence flow cytometry and biomarkers. Review of 1034 Palaeobotany and Palynology 108, 37 – 53. 1035 Tissot, B., Welte, D.M., 1984. Petroleum Formation and Occurrence. 1036 Springer-Verlag, Berlin, 699 p. 1037 Taylor, T.N., Taylor, E.L., Krings, M., 2009. Paleobotany: The Biology 1038 and Evolution of Fossil Plants. Academic Press, 1230 p. 1039 Thomas, B. R., 1969. Organic Geochemistry. Methods and results, 1040 chapter Kauri resins- modern and fossil. Springer Verlag, Berlin, 1041 599 – 618. 1042 Tuo, J., Philp, R. P., 2005. Saturated and aromatic diterpenoids and 1043 triterpenoids in Eocene coals and mudstones from China. Applied 1044 Geochemistry 20, 367 – 381. 1045 Underhill, J. R., Monaghan, A. A., Browne, M. A. E., 2008. Controls on 1046 structural styles, basin development and petroleum prospectivity in 1047 Romero-Sarmiento et al., 48 the Midland Valley of Scotland. Marine and Petroleum Geology 25, 1048 1000 – 1022. 1049 van Aarssen, B.K.G, Bastow, T.P., Alexander, R., Kagi, R., 1999. 1050 Distributions of methylated naphthalenes in crude oils: indicators 1051 of maturity, biodegradation and mixing. Organic Geochemistry 30, 1052 1213 – 1227. 1053 van Aarssen, B.K.G., Alexander, R., Kagi, R.I, 2000. Higher plant 1054 biomarkers reflect palaeovegetation changes during Jurassic times. 1055 Geochimica et Cosmochimica Acta 64, 1417 – 1424. 1056 Ventura, G.T., Kenig, F., Reddy, C.M., Schieber, J., Frysinger, G.S., 1057 Nelson, R.K., Dinel, E., Gaines, R.B., Schaeffer, P., 2007. Molecular 1058 evidence of Late Archean archaea and the presence of a subsurface 1059 hydrothermal biosphere. Proccedings of the National Academy of 1060 Sciences 104, 14260 – 14265. 1061 Vliex, M., Hagemann, H.W., Püttmann, W., 1994. Aromatized 1062 arborane/fernane hydrocarbons as molecular indicators of floral 1063 changes in Upper Carboniferous/Lower Permian strata of the Saar- 1064 Nahe Basin, southwestern Germany. Geochimica et Cosmochimica 1065 Acta 58, 4689 – 4702. 1066 Volkova, I.B., 1994. Nature and composition of the Devonian coals of 1067 Russia. Energy and Fuels 8, 1489 – 1493 1068 Wagner, R.H., 1989. A late Stephanian forest swamp with 1069
1070
Romero-Sarmiento et al., 49 Basin, central Spain. International Journal of Coal Geology 12, 523 1071 – 552.
1072 Waldbauer, J.R., Sherman, L.S., Sumner, D.Y., Summons, R.E., 2009. 1073 Late Archean molecular fossils from the Transvaal Supergroup 1074 record the antiquity of microbial diversity and aerobiosis. 1075 Precambrian Research 169, 28 – 47. 1076 Wang, S. J., 1998. The cordaitean fossil plants from Cathaysian area in 1077 China. Acta Botanica Sinica 40, 573 – 579. 1078 Wang, T.G., Simoneit, B.R.T., 1990. Organic geochemistry and coal 1079 petrology of Tertiary brown coal in the Zhoujing mine, Baise Basin, 1080 South China. Fuel 69, 12 – 20. 1081 Wu C.-L., Jong J.-R., 2001. A Cyclic Peroxide of Clerodenoic Acid from 1082 the Taiwanese Liverwort Schistochila acuminata. Journal of Asian 1083 Natural Products Research 3, 241 – 246. 1084 Yi, W., Berry, C.M., Shougang, H., Honghe, X., Qiang, F. (2007) The 1085 Xichong flora of Yunnan, China: diversity in late Mid Devonian 1086 plant assemblages. Geological Journal 42, 339 – 350. 1087 Zhou, Y.X., 1994. Earliest pollen-dominated microfloras from the early 1088 Late Carboniferous of the Tian Shan Mountains, NW China: their 1089 significance for the origin of conifers and palaeophytogeography. 1090 Review of Palaeobotany and Palynology 81, 193 – 211. 1091
Romero-Sarmiento et al., 50
1093 1094
Fig. 1. Simplified geologic map showing the outcrop sample positions at 1095
Dunbar (White Sand and Skateraw Bays) in the Midland Valley of 1096
Scotland (modified from Spinner and Clayton, 1973; Underhill et al., 1097
2008). 1098
1099
Fig. 2. The outcrop geological succession showing alternating 1100
Carboniferous limestones, shales, sandstones and coals (modified from 1101
Spinner and Clayton, 1973). 1102
1103
Fig. 3. Plot of HI vs. T max
values for Scottish coals (diagram from 1104
Espitalié et al., 1986). 1105
1106
Fig. 4. Photomicrographs of macerals. A) WS-3, reflected natural light. 1107
Vitrinite particles : telocollinite (Vt) and desmocollinite (Vd). B) Same 1108
zone as A, blue light fluorescence emphasizing exinite particles: 1109
fluorescing spores (S) and cuticles (C). C) SKT-E, blue light 1110
fluorescence. Exinite particles: fluorescing spores (S) and resinite (R) 1111
filling conducting canals in a vitrinite particle. D) WS-3, reflected 1112
natural light. Pyrofusinite (P) and spores (S) in a vitrinite (V) 1113
groundmass. 1114
1115
Romero-Sarmiento et al., 51
1116 coal extracts. Numbers above symbols denote to carbon number of n- 1117 alkane
1118 1119
Fig. 6. Mass chromatograms m/z 57 of aliphatic fractions from coal 1120
samples, showing the distribution of n-alkanes, isoprenoids and 1121
branched alkanes. Numbers above symbols indicate carbon number. 1122
1123
Fig. 7. Plot of Pr/n-C 17 vs. Ph/n-C 18 for Scottish coals (diagram from 1124 Hunt, 1995). 1125
1126 Fig. 8. Mass chromatograms m/z 191 of aliphatic fractions from coal 1127
samples, showing the distribution of hopanes and moretanes. Numbers 1128
above symbols indicate carbon number. The molecular structure 1129
represents the standard hopane skeleton. 1130
1131
Fig. 9. Mass chromatograms m/z 217 of aliphatic fractions from coal 1132
samples, showing the distribution of steroids. Numbers above symbols 1133
indicate carbon number. 1134
1135
Fig. 10. Steroids ternary plot. The contributions of C 27 , C 28 and C
29
1136 steranes were calculated using the peak height of ααα (20R) and αββ 1137
(20S) isomers on m/z 217 fragmentograms. Paleoenvironmental and 1138
source interpretation from Huang and Meinschein (1979). 1139
Romero-Sarmiento et al., 52
1140 Fig. 11. Partial m/z 109 + 123 + 179 + 193 mass fragmentograms 1141
showing the distribution of bicyclic alkanes (+) in the extracts of 1142
Scottish coals. Peak assignments in Table 3. Numbers denote carbon 1143
number. 1144
1145
Fig. 12. Partial m/z 109 + 123 + 193 + 233 mass fragmentograms 1146
showing the distribution of diterpenoid hydrocarbons (o) in the extracts 1147
of Scottish coals. Peak assignments in Table 4. Numbers denote carbon 1148
number. (A) Mass spectrum of compound identified as C 18 tricyclic 1149 hydrocarbon (Peak II). 1150
Fig. 13. Total ion current chromatograms of aromatic fraction from 1152
extracts of two selected coal samples. Peak assignments in Table 5 1153
Abbreviations: MN – methylnaphthalene; EN + DMN – ethyl- and 1154
dimethylnaphthalene; DBF – dibenzofuran; TMN – 1155
trimethylnaphthalene; MDBF – methyldibenzofuran; TeMN – 1156
tetramethylnaphthalene; DMDBF – dimethyldibenzofuran; P – 1157
phenanthrene; PMN – pentamethylnaphthalene; MP – 1158
methylphenanthrene; EP + DMP – ethyl– and dimethylphenanthrene; 1159
PAHs – polycyclic aromatic hydrocarbons; X – contaminant 1160
(polysiloxanes). 1161
1162
Romero-Sarmiento et al., 53
1163 distribution of methyl-; ethyl- and dimethylnaphthalene isomers in the 1164 aromatic fractions of Scottish coals. Abbreviations: MN – 1165 methylnaphthalene; EN – ethylnaphthalene; DMN – 1166 dimethylnaphthalene. Peak assignments in Table 5. 1167
Fig. 15. Partial m/z 170 mass fragmentograms showing the 1169
distribution of trimethylnaphthalene (TMN) isomers in the aromatic 1170
fractions of Scottish coals. 1171
1172
Fig. 16. Partial m/z 184 mass fragmentograms showing the 1173
distribution of tretramethylnaphthalene (TeMN) isomers in the aromatic 1174
fractions of Scottish coals. 1175
1176
Fig. 17. Partial m/z 178+192 mass fragmentograms showing the 1177
distribution of phenanthrene (P), anthracene (A), methylphenanthrene 1178
(MP) and methylanthracene (MA) isomers in the aromatic fractions of 1179
Scottish coals. 1180
1181
Fig. 18. Partial m/z 206 mass fragmentograms showing the 1182
distribution of ethyl- and dimethylphenanthrene isomers in the 1183
aromatic fractions of Scottish coals. Abbreviations: EP – 1184
ethylphenanthrene, DMP – dimethylphenanthrene. 1185
1186
Romero-Sarmiento et al., 54
1187 series of C 17 to C
19 isohexylalkylnaphthalenes in the aromatic fractions 1188 of Scottish coals. Peak assignments in Table 5. Abbreviations: iHMN – 1189 isohexylalkylnaphthalene, PMN – pentamethylnaphthalene, DMP – 1190 dimethylphenanthrene. 1191
1192 Fig. 20. Partial m/z 237 and m/z 223 mass fragmentograms showing 1193
the distribution of diaromatic tricyclic hydrocarbons in the aromatic 1194
fractions of Scottish coals. Abbreviations: Sim – simonellite, To – 1195
diaromatic tricyclic totarane, Semp – diaromatic tricyclic sempervirane, 1196
Tre - tetrahydroretene. Peak assignments in Table 5. Mass spectra of 1197
the two tentatively identified tetrahydroretene-derived isomers are also 1198
showed shown (Tre 1 and Tre 2 ).
1199
1200 1201
Table 1 1202
Bulk and molecular geochemical parameters from Scottish coals. 1203
1204
Table 2 1205
Petrographic composition and vitrinite reflectance. 1206
1207
Table 3 1208
Bicyclic alkanes identified. 1209
1210
Romero-Sarmiento et al., 55
1211 Diterpenoid hydrocarbons identified. 1212
1213 Table 5 1214
Aromatic hydrocarbons identified. 1215
1216
Table 6 1217
Maturity indicators from aromatic fractions of Carboniferous coal 1218
samples. 1219
1220
Table 7 1221
List of target saturated and aromatic land plant biomarkers and their 1222
origin. 1223
1224
Appendix 1225
Mass spectra of unknown compounds (Peak assignments in Tables 2 1226
and 3). 1227
1228
Edinburgh U.K
Midland Valley of Scotland Glasgow
Skateraw Bay White Sand Bay Carboniferous Sampling location Southern
Uplands Fault
Highland Boundary
Fault Permian
Bashkirian - Kasimovian Serpukhovian Tournaisian - Visean Carboniferous volcanic rocks Late Devonian Ordovician - Early Devonian 0 200 Km
N 700000
250000 650000
600000 350000
300000 Dunbar Barness East Limestone Geological members STRATIGRAPHY Succession Samples Chapel Point Limestone Horizon SC2 (Spinner and Clayton, 1973) Upper Skateraw Limestone Middle Skateraw Limestone Lower Skateraw Limestone Upper Longcraig Limestone Middle Longcraig Limestone Longcraig coal (Spinner, 1969) SKT-E
SKT-D WS-2
WS-3 10 m
Limestone Coal
Shale, siltstone and sandstone 400 150
420 440 460 480 500 520 300
450 600
750 900
0 Type I
Type II Type III
HI (mgHC/g
T OC)
Tmax (°C) Oil
Wet gas Immature
540 SKT-E
SKT-D WS-2
WS-3 C S Vt Vd S S R P A B C D V S
telocollinite (Vt) and desmocollinite (Vd). B) Same zone as A, blue light fluorescence emphasizing exinite particles: fluorescing spores (S) and cuticles (C). C) SKT-E, blue light fluorescence. Exinite particles: fluorescing spores (S) and resinite (R) filling conducting canals in a vitrinite particle. D) WS-3, reflected natural light. Pyrofusinite (P) and spores (S) in a vitrinite (V) groundmass.
SKT-E SKT-D
Pr Pr Ph Ph Npr
Npr 18 18 19 19 20 20 27 29 29 27 16 16 13 13 WS-2 WS-3
Pr Pr Ph Npr 18 19 20 29 29 27 27 16 13 Ph Npr
18 19 20 16 34 36 38 40 20 42 22 44 24 46 50 56 26 48 54 52 28 30 32 Retention time (mins) 58 18 16 13 14
regular isoprenoids steroids
Npr norpristane branched alkanes Pr pristane Ph phytane bicyclic alkanes hopanoids diterpenoids contaminant X X
X SKT-E SKT-D
WS-2 WS-3
Pr Ph Npr 18 19 25 27 29 31 19 25 27 29 31 19 25 27 29 31 19 25 27 29 31 Pr Pr 33 Ph 18 Ph 18 Ph 18 Npr Npr
Npr 16 16 16 16 Pr 16 16 16 16 15 15 12 12 12 12 15 15 34 14 36 16 38 18 40 20 42 22 44 24 46 50 26 48 52 28 30 32 Retention time (mins) n-alkanes regular isoprenoids Npr norpristane branched alkanes Pr pristane Ph phytane SKT-E SKT-D
WS-2 WS-3
Marine Type
II kerogen
Mixed Type
II/III kerogen
Terrestrial Type
III kerogen
10.0 1.0
0.1 0.1
1.0 10.0
Reducing Oxidizing Ph/ -C
18 Pr/ -C n 17
29 R 31 S 31 30 29 30 αβ hopanes ββ nes
hopa βα moretanes Tm 27
29 28 SKT-E SKT-D WS-2
45 50 55 60 WS-3
Retention Time (min) 29 30
Tm 27 R 31 S R R 31 S S 32 32 30 29 29 27 28 29 30 Tm 27 R 31 S R 31 S 32 30 29 29 27 28 29 30 Tm 27 R 31 S R 31 S 32 30 29 29 27 28 R R R R R R R R 32 32 32 32 33 33 33 33 S S S S S S S S βα αββ
αβ 5β 5β 5β 5β 5β 5β 5β 5β 5β 5β 5β 5β 5α 5α 5α 5α 5α 5α 5α 5α 5α 5α ααα WS-2 WS-3
29 29 29 29 29 29 29 29 28 28 28 28 27 27 27 27 R R R R R R R R R R R R S S S S S S S S S S S S S S S S R R R R R R R R S S S S S S S S S S S S S S S S S S S S R R R R 27 27 20 20 20 20 20 20 21 21 21 21 21 21 21 21 22 22 22 22 19 19 19 19 27 27 28 28 28 28 22 24 26 32 40 50 28 34 42 52 30 38 48 36 46 44 54 Retention Time (min) SKT-D
Steranes Diasteranes Short chain SKT-E
Estuarine/bay Terrestrial Open marine Lacustrine Higher- plants
Higher- plants
Zoo- plankton
C 27 C 29 C 28 Phyto- plankton
Phyto- plankton
SKT-E SKT-D
WS-2 WS-3
Phyto- plankton
Higher- plants
15 15 15 15 14 14 14 14 16 16 16 16 SKT-D SKT-E
Retention Time (mins) 16 15 17 18 19 20 21 WS-2 WS-3 50 50 50 50 100 100 100
100 Relative
abundance Relative
abundance Relative
abundance Relative
abundance a a a a b b b b c c c c d d d d e e e e f f f f j j j j h h h h k k k k l l l p p p p m m m m q q q q n n n n o o o o g g g g i i i i
19 19 19 19 18 18 18 18 20 20 20 20 SKT-D SKT-E
Retention Time (mins) 25 29 27 31 32 24 28 26 30 WS-2
WS-3 50 50 50 50 100 100 100
100 Relative
abundance Relative
abundance Relative
abundance Relative
abundance I I I I III III III
III IV IV IV IV V V V V VI VI VI VI VII
VII VII
VII VIII
VIII VIII
VIII IX IX IX IX X X X X XI XI XI XI XII
XII XII
XII XVIII
XVIII XVIII
XVIII XIII
XIII XIII
XIII XV XV XV XV XVI XIV XIV
XIV XIV
XVI XVI
XVI XVII
XVII XVII
XVII II (A) II II II ? ? ? 20 40 60 80 100
50 100
200 150
250 248
193 109
95 81 69 55 123
137 149
163 177 206 220
233 m/z
Relative abundance 16 30 24 38 18 32 26 40 20 34 28 14 22 36 Retention T ime
(mins) Relativeabundance Relativeabundance WS-3
1 1 2 2 X X X X X X 4 5 5 6 6 7 8 8 9 9 10 10 11 11 12 12 13 13 14 15 17 17 18 18 19 19 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 40 40 41 41 44 44 42 42 43 43 39 39 38 38 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 57 57 58 58 59 59 60 60 66 66 65 65 61 61 62 62 64 63 63 67 67 68 68 69 69 70 70 72 72 73 73 75 75 74 74 76 76 77 77 84 84 87 87 88 88 89 89 90 90 91 91 92 92 93 93 94 94 97 97 96 96 95 95 78-83
78-83 85-
86 85-
86 71 71 56 56 26 26 25 25 24 24 23 23 22 22 21 21 20 20 16 16 15 14 7 4 3 3 MN MN PMN PMN MP MP EP+DMP others
P AHs
others P AHs EP+DMP P P MDBF DMDBF
DMDBF MDBF
EN+DMN TMN
TMN T eMN T eMN
DBF DBF
EN+DMN SKT
-E O O O O O O SKT-E SKT-D
WS-2 WS-3
2-EN 2-EN
2-EN 2-EN
1-EN 1-EN
1-EN 1-EN
2,6-+2,7-DMN 2,6-+2,7-DMN 2,6-+2,7-DMN 2,6-+2,7-DMN 1,3-+1,7-DMN 1,3-+1,7-DMN 1,3-+1,7-DMN 1,3-+1,7-DMN 1,4-+2,3-DMN 1,4-+2,3-DMN 1,4-+2,3-DMN 1,4-+2,3-DMN 1,6-DMN 1,6-DMN
1,6-DMN 1,6-DMN
1,5-DMN 1,5-DMN
1,5-DMN 1,5-DMN
1,2-DMN 1,2-DMN
1,2-DMN 1,2-DMN
16,0 17,5
14,5 15,5
17,0 14,0
15,0 16,5
13,5 Retention Time (mins) 1-MN 1-MN
1-MN 1-MN
2-MN 2-MN
2-MN 2-MN
1 2 7 8 9 10 11 12 13 14 50 50 50 50 100 100 100
100 Relative
abundance Relative
abundance Relative
abundance Relative
abundance 1,3,6-TMN 1,3,6-TMN 1,3,6-TMN 1,3,6-TMN 1,2,7-TMN 1,2,7-TMN 1,2,7-TMN 1,2,7-TMN 1,6,7-TMN 1,6,7-TMN 1,6,7-TMN 1,6,7-TMN 1,2,4-TMN 1,2,4-TMN 1,2,4-TMN 1,2,4-TMN 1,2,5-TMN 1,2,5-TMN 1,2,5-TMN 1,2,5-TMN 1,2,6-TMN 1,2,6-TMN 1,2,6-TMN 1,2,6-TMN 2,3,6-TMN 2,3,6-TMN 2,3,6-TMN 2,3,6-TMN 1,4,6-+1,3,5-TMN 1,4,6-+1,3,5-TMN 1,4,6-+1,3,5-TMN 1,4,6-+1,3,5-TMN 1,3,7-TMN 1,3,7-TMN 1,3,7-TMN 1,3,7-TMN 18,6 18,8
18,4 18,2
18,0 19,0
19,2 19,4
19,6 19,8
20,0 20,2
20,4 Retention Time (mins) SKT-E SKT-D
WS-2 WS-3
1,3,6,7-TeMN 1,3,6,7-TeMN 1,3,6,7-TeMN 1,3,6,7-TeMN 1,2,3,6-TeMN 1,2,3,6-TeMN 1,2,3,6-TeMN 1,2,3,6-TeMN 2,3,6,7-TeMN 2,3,6,7-TeMN 2,3,6,7-TeMN 2,3,6,7-TeMN 1,2,6,7-TeMN 1,2,6,7-TeMN 1,2,6,7-TeMN 1,2,6,7-TeMN 1,2,4,6-+1,2,4,7- +1,4,6,7-TeMN 1,2,4,6-+1,2,4,7- +1,4,6,7-TeMN 1,2,4,6-+1,2,4,7- +1,4,6,7-TeMN 1,2,4,6-+1,2,4,7- +1,4,6,7-TeMN 1,2,3,7-TeMN 1,2,3,7-TeMN 1,2,3,7-TeMN 1,2,3,7-TeMN 1,2,5,7-TeMN 1,2,5,7-TeMN 1,2,5,7-TeMN 1,2,5,7-TeMN 1,3,5,7-TeMN 1,3,5,7-TeMN 1,3,5,7-TeMN 1,3,5,7-TeMN 1,2,5,6-+ 1,2,3,5-TeMN 1,2,5,6-+ 1,2,3,5-TeMN 1,2,5,6-+ 1,2,3,5-TeMN 1,2,5,6-+ 1,2,3,5-TeMN 21,0 22,0
23,0 24,0
Retention Time (mins) SKT-E
SKT-D WS-2
WS-3 P P P P A A A A 3-MP 3-MP 3-MP
3-MP 9-MP
9-MP 9-MP
9-MP 1-MP
1-MP 1-MP
1-MP 2-MP
2-MP 2-MP
2-MP 2-MA
2-MA 2-MA
2-MA 23 24 25 26 27 28 29 Retention Time (mins) SKT-E SKT-D
WS-2 WS-3
3-EP 3-EP
3-EP 3-EP
1-EP 1-EP
1-EP 1-EP
9-+2-EP 9-+2-EP
9-+2-EP 9-+2-EP
1,6-+2,9-+2,5-DMP 1,6-+2,9-+2,5-DMP 1,6-+2,9-+2,5-DMP 1,6-+2,9-+2,5-DMP 3,5-+2,6-DMP 3,5-+2,6-DMP 3,5-+2,6-DMP 3,5-+2,6-DMP 1,3-+3,9-+ 2,10-+3,10-DMP 1,3-+3,9-+ 2,10-+3,10-DMP 1,3-+3,9-+ 2,10-+3,10-DMP 1,3-+3,9-+ 2,10-+3,10-DMP 1,9-+4,9-+4,10-DMP 1,9-+4,9-+4,10-DMP 1,9-+4,9-+4,10-DMP 1,9-+4,9-+4,10-DMP 1,7-DMP 1,7-DMP
1,7-DMP 1,7-DMP
2,7-DMP 2,7-DMP
2,7-DMP 2,7-DMP
1,8-DMP 1,8-DMP
1,8-DMP 1,8-DMP
2,3-DMP 2,3-DMP
2,3-DMP 2,3-DMP
29,0 30,0
31,0 32,0
Retention Time (mins) SKT-E
SKT-D WS-2
WS-3 1,7-DMP 1,2,3,5,6-PMN C iHMN 19
18 C iHMN
17 26,0
27,0 28,0
29,0 30,0
31,0 32,0
33,0 Retention Time (mins) SKT-E SKT-D
WS-2 WS-3
48 48 48 48 51 51 51 51 56 56 56 56 66 66 66 66 73 73 73 73 Relative abundance WS-3 SKT-E
Tre Tre
m/z 223 m/z 223
m/z 237 m/z 237
Sim Sim
To To Semp Semp Tre ?
1 Tre ?
1 Tre ?
1 Tre ?
2 Tre ?
2 Tre ?
2 30,0
30,0 30,0
30,0 20 20 20 20 20 20 40 40 40 40 40 40 60 60 60 60 60 60 80 80 80 80 80 80 100
100 100
100 100
100 31,0
31,0 50 50 100 100
200 200
150 150
250 250
223 223
238 238
103111 208
208 153
168 195
193 89 109 89 165 179
179 152
31,0 31,0
32,0 32,0
32,0 32,0
33,0 33,0
33,0 33,0
36,0 36,0
34,0 34,0
34,0 34,0
37,0 37,0
35,0 35,0
35,0 35,0
38,0 38,0
Retention Time (mins) Retention Time (mins) m/z m/z
Retention Time (mins) Retention Time (mins) 70 70
74 76 76 90 90 77 77 Relative
abundance Relative
abundance Relative
abundance Relative
abundance Relative
abundance Relative
abundance Peak e: C bicyclic alkane? 14
14
15
15
? 18 tricyclic hydrocarbon Peak I: C tricyclic hydrocarbon? 18
? 18
Peak V: C 18 tricyclic hydrocarbon? Peak VII: C ? 18 tricyclic hydrocarbon Peak VI: C tricyclic hydrocarbon? 18
? 19
Peak IX: C 19 tricyclic hydrocarbon? Peak XI: C ? 20 tetracyclic diterpenoid Peak X: C tretracyclic diterpenoid? 20
? 20
Document Outline
Download 496.38 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling