Силы инерции в природе План
Движение по прямой в инерциальной СО
Download 121.5 Kb.
|
Силы инерции в природе
Движение по прямой в инерциальной СО
Математика считает векторы равными в том случае, если они коллинеарны, а их модули равны. Никаких уточнений относительно взаимного расположения начал равных векторов векторная алгебра не устанавливает.[20] В физике указание на точку приложения вектора подчас имеет решающее значение, например, при разъяснения смысла Третьего закона Ньютона [21] Выполнив тривиальную математическую операцию в выражении (5) и перенеся член из правой части в левую, получаем безупречную математически запись: + = 0 (6) С физической точки зрения сложение векторов сил имеет своим результатом получение равнодействующей силы. В таком случае прочтённое с точки зрения физики выражение (6) означает, с одной стороны, что равнодействующая сил равна нулю и, следовательно, оба тела не могут двигаться ускоренно. С другой стороны здесь не высказаны никакие запреты на ускоренное движение тел. Получается, что тело движется ускоренно при отсутствии действующих на него сил. Это противоречие разрешается тем, что понятие о равнодействующей возникает лишь в случае оценки совместного действия нескольких сил на одно и то же тело. В данном же случае, хотя силы равны по модулю и противоположны по направлению, но приложены к разным телам и потому не уравновешивают друг друга, поскольку на каждое из взаимодействующих тел действует лишь одна из них. Равенство (6)не указывает на взаимную нейтрализацию их действия.[8] [16] Повсеместно используется запись уравнения, выражающего второй закон Ньютона в инерциальной системе отсчёта: (7) Если есть результирующая всех реальных сил, действующих на тело, то это выражение, представляющее собой каноническую запись Второго закона, является просто утверждением, что получаемое телом ускорение пропорционально этой силе и массе тела. Оба выражения, стоящие в каждой части этого равенства относятся к одному и тому же телу и обозначают одно и то же.. Но выражение (7) может быть подобно (6) переписано как: =0 (8) Для постороннего, находящегося в инерциальной системе наблюдателя и анализирующего ускорение тела, на основании сказанного выше такая запись имеет физический смысл только в том случае, если члены в левой части равенства относятся к силам, возникающим одновременно, но относящимся к разным телам. И в (8) второй член слева представляет собой такую же по величине силу, но направленную в противоположную сторону и приложенную к другому телу, а именно силу , то есть (9) В случае, когда оказывается целесообразным разделение взаимодействующих тел на ускоряемое и ускоряющее и, чтобы отличить действующие тогда на основании Третьего закона силы, те из них, которые действуют со стороны ускоряемого тела на ускоряющее называют силами инерции или, как предложено в [22] «ньютоновыми силами инерции» что соответствует записи выражения (5) для Третьего закона в новых обозначениях: (10) Существенно, что сила действия ускоряющего тела на ускоряемое и сила инерции имеют одно и то же происхождение и, если массы взаимодействующих тел близки друг другу настолько, что и получаемые ими ускорения сравнимы по величине, то введение особого наименования «сила инерции» является лишь следствием достигнутой договорённости. Оно так же условно, как и само деление сил на действие и противодействие. Иначе обстоит дело, когда массы взаимодействующих тел несравнимы между собой (человек и твёрдый пол, отталкиваясь от которого он идёт).В этом случае деление тел на ускоряющие и ускоряемые становится вполне отчётливым, а ускоряющее тело может рассматриваться как связь, ускоряющая тело, но не ускоряемая сама по себе.[8] Download 121.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling