Snt, odatda oddiygina neyron tarmoqlari


Download 68.57 Kb.
bet9/9
Sana26.03.2023
Hajmi68.57 Kb.
#1297363
1   2   3   4   5   6   7   8   9
Bog'liq
Sunʼiy neyron tarmoqlari

Nazariya[tahrir | manbasini tahrirlash]
Asosiy eʼtiroz shundaki, SNT neyronal funksiyani etarli darajada aks ettirmaydi. Biologik neyron tarmoqlarda bunday mexanizm mavjud boʻlmasa-da, orqaga tarqalish juda muhim qadamdir.[131] Haqiqiy neyronlar tomonidan maʼlumot qanday kodlanganligi nomaʼlum. Sensor neyronlari sensor faollashishi bilan harakat potentsiallarini tez-tez yondiradi va ular bilan bogʻlangan motor neyronlari harakat potentsiallarini tez-tez qabul qilganda mushak hujayralari kuchliroq tortiladi.[132]
SNTning asosiy daʼvosi shundaki, ular axborotni qayta ishlashning yangi va kuchli umumiy tamoyillarini oʻz ichiga oladi. Bu tamoyillar notoʻgʻri taʼriflangan. Koʻpincha ular tarmoqning oʻzidan paydo boʻlgan deb daʼvo qilinadi.1997-yilda Aleksandr Dyudnining taʼkidlashicha, natijada sunʼiy neyron tarmoqlari „hech narsaning oʻrniga“ sifatga ega boʻlib, u oʻziga xos dangasalik aurasini va bu hisoblash tizimlari qanchalik yaxshi ekanligiga qiziquvchanlikning yoʻqligini beradi. Yechimlar xuddi sehr bilan topiladi; va hech kim hech narsani oʻrganmaganga oʻxshaydi"[133] Dyudniga javoblardan biri shundaki, neyron tarmoqlar koʻplab murakkab va xilma-xil vazifalarni bajaradi: avtonom uchuvchi samolyot[134] dan kredit kartalaridagi firibgarlikni aniqlashgacha, Go oʻyinini oʻzlashtirishgacha.
Texnologiya yozuvchisi Rojer Bridgman shunday dedi:
Biologik miyalar miya anatomiyasi tomonidan xabar qilinganidek, sayoz va chuqur zanjirlardan foydalanadi[135], turli xil oʻzgarmaslikni namoyish etadi. Weng[136] miya oʻz-oʻzidan simlarni asosan signal statistikasiga koʻra bogʻlaydi va shuning uchun ketma-ket kaskad barcha asosiy statistik bogʻliqliklarni ushlay olmaydi.
Uskuna[tahrir | manbasini tahrirlash]
Katta va samarali neyron tarmoqlar katta hisoblash resurslarini talab qiladi.[137] Miya neyronlar grafigi orqali signallarni qayta ishlash vazifasiga moslashtirilgan apparatga ega boʻlsa-da, hatto fon Neyman arxitekturasida soddalashtirilgan neyroNTi taqlid qilish ham katta hajmdagi xotira va xotirani isteʼmol qilishi mumkin. Bundan tashqari, dizayner koʻpincha signallarni ushbu ulanishlar va ular bilan bogʻliq neyronlar orqali uzatishi kerak — Bu juda katta CPU quvvati va vaqtini talab qiladi.
Shmidxuberning taʼkidlashicha, 21-asrda neyron tarmoqlarning qayta tiklanishi asosan apparat taʼminotidagi yutuqlar bilan bogʻliq: 1991-yildan 2015-yilgacha hisoblash quvvati, ayniqsa GPGPUlar (GPU’lar) tomonidan etkazib berilganidek, taxminan bir million barobar oshdi. oldingidan bir necha qatlam chuqurroq boʻlgan oʻqitish tarmoqlari uchun standart orqaga tarqalish algoritmi.[9] FPGA va GPU kabi tezlatgichlardan foydalanish mashgʻulotlar vaqtini bir necha oydan kungacha qisqartirishi mumkin.
Neyromorfik muhandislik yoki jismoniy neyron tarmoq kontaktlarning zanglashiga olib keladigan neyron tarmoqlarini toʻgʻridan-toʻgʻri amalga oshirish uchun von-NeumSNT boʻlmagan chiplarni qurish orqali apparat qiyinchiliklarini toʻgʻridan-toʻgʻri hal qiladi. Neyron tarmoqlarni qayta ishlash uchun optimallashtirilgan yana bir chip turi Tensor Processing Unit yoki TPU deb ataladi.[138]
Amaliy qarama-qarshi misollar[tahrir | manbasini tahrirlash]
SNT tomonidan oʻrganilgan narsalarni tahlil qilish biologik neyron tarmoq tomonidan oʻrganilgan narsalarni tahlil qilishdan koʻra osonroqdir. Bundan tashqari, neyron tarmoqlar uchun oʻrganish algoritmlarini oʻrganish bilan shugʻullanadigan tadqiqotchilar asta-sekin oʻquv mashinasining muvaffaqiyatli boʻlishiga imkon beruvchi umumiy tamoyillarni ochib berishadi. Misol uchun, mahalliy va mahalliy boʻlmagan oʻrganish va sayoz va chuqur arxitektura.[139]
Download 68.57 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling