Teoretičeskaâ i prikladnaâ nauka Theoretical & Applied Science
= 4.260 ISPC Education and Innovation
Download 19.82 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- Impact Factor: ISRA
- = 2.031 ICV
- Гистограммная адекватность (C,Λ)- выборок реальной многомерной выборки
- Theoretical Applied Science p-ISSN
- SECTION 8. Architecture and construction. ACCURACY OF DETERMINATION OF THE MARKING NETWORK COORDINATES Abstract
- Key words
= 4.260 ISPC Education and Innovation, Scranton, USA 59 Рисунок 3 - Значения модельных и фактически значений показателя «возраст». Здесь средний вораст равен 21,3125 лет, а для показателя «возраст» его стандартное отклонение равно s 3 =0,8455. Рисунок 4 - Значения модельных и фактически значений показателя «количество калорий». Здесь среднее количество калорий, потребляемых ими (16 студентами) равно 1976,8540 калорий, а для показателя «количество калорий» его стандартное отклонение равно s 4 = 148,8840. Далее в (С,Λ)-выборка преобразуется при помощи своих средних 175.6250, 62.5000, 21.3125, 1976.8540 и стандартных отклонений 8.3731, 6.9462, 0.8455, 148.8840 в модельную выборку, адекватную реальной выборке. Мы используем наиболее устойчивой статистикой (параметром) многомерной выборки Z 16,4 является не матрица R nn коэффициентов корреляции, а спектр последней Λ 4,4 =diag(λ 1 ,λ 2 ,…,λ 4 ). Три ненулевых собственных чисел и 4 собственных векторов с j =(с 1j ,с 2j …с 4j ) Т , образующих ортогональную матрицу C 44 =[ с 1 |с 2 | …|с 4 ], согласованную со спектром Λ 44 таким образом, что RC=CΛ,C т C=CC т =I 44 ,Λ 44 =diag(λ 1 ,…λ 4 ), diag(R 44 )=(1,…,1),tr(R n44 )=1+1+…+1=tr(Λ 44 )= =λ 1 +…+λ 4 =4, дали нам искомые адекватности. значения возрастов студентов 19,5 20 20,5 21 21,5 22 22,5 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 фактические модельные значения потре-х калорий студентов 1500 1700 1900 2100 2300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 фактические модельные Impact Factor: ISRA (India) = 1.344 ISI (Dubai, UAE) = 0.829 GIF (Australia) = 0.564 JIF = 1.500 SIS (USA) = 0.912 РИНЦ (Russia) = 0.234 ESJI (KZ) = 1.042 SJIF (Morocco) = 2.031 ICV (Poland) = 6.630 PIF (India) = 1.940 IBI (India) = 4.260 ISPC Education and Innovation, Scranton, USA 60 Визуальная адекватность цифровых значе ний реальной j-ой переменной и модельной j-ой переменной (j=1,…,4) свидетельствует о высо кой степени адекватности применяемой нами модели (рисунки №1,2,3,4) для моделирования высоко коррелированных 1-мерных переменных из реальной выборки. Гистограммная адекватность (C,Λ)- выборок реальной многомерной выборки следует из цифровой адекватности (C,Λ)-выборок реальной многомерной выборке. Каждый интервал оси интервалов гистограммы содержит одинаковое число как модельных, так и реальных значений j–ой 1-мерной переменной. Если значения разности между i-ми значениями реальной и модельной переменной не превосходят длины шага разбиения оси интервалов гистограммы. Это выполнимо для всех процедур [11]. Выводы Для проверки адекватности реальной и модельной (С,Λ)-выборок мы применили для сравнения 2 способа: а) модельный, при котором матрицы R 44 ,C 44 ,Λ 44 (R 44 C 44 =C 44 Λ 44 ) одинаковы у сравниваемых (С,Λ)-выборок; б) найденные 4 гистограммные оценки эмпирических функций плотностей распределения 4-х зависимых 1-мерных случайных модельных переменных из модельной (С,Λ)-выборки Z (t) 16,4 , адекватны 4 оценкам эмпирических функций плотностей распределения 4-х зависимых 1-мерных случайных реальных переменных из реальной (С,Λ)-выборки Z real 16,4 из ОМ ГК. Мы пытаемся решить обратную задачу. Обычно решают прямую задачу: по известной многомерной функции распределения случай ного вектора ξ=(ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 ) найти распределение каждой из его компонент. Мы решаем обратную задачу: при неизвестной многомерной функции распределения случайного вектора ξ=(ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 ) найти 1-мерное распределение каждой из 4-х зависимых компонент ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 . Решить эту обратную задачу, т.е. восстановить совместное эмпирическое распределение вектора ξ=(ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 ) по эмпирическим распределениям 4-х зависимых случайных величин ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 , вообще говоря, невозможно. Однако эту задачу можно решить, если рассматривать независи мые случайные величины η 1 ,η 2 ,η 3 ,η 4 , образующие случайный вектор η=(η 1 ,η 2 ,η 3 ,η 4 )= =(ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 ) 44 при 16 реализациях которого имеем выборку- вышеуказанную матрицу глав ных компонент Y 16,4 , где 44 -неизвестная матри ца собственных векторов (ее оценкой служит матрица С 44 ) неизвестной теоретической корреля ционной матрицы Σ 44 , существование которой мы предполагаем априори. References: 1. Zhanatauov SU (2013) Obratnaya model' glavnykh komponent. – Almaty: Kazstatinform, 2013. - 201 p. 2. Fursov VG (2013) Innovatsionnaya napravlennost' nauchnogo issledovaniya (retsenziya na monografiyu Zhanatauova S.U. «Obratnaya model' glavnykh komponent». – Almaty: Kazstatinform, 2013. - 201 p.). Vestnik KazNTU, №1, pp. 370-373. 3. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO (1990) "A new predictive equation for resting energy expenditure in healthy individuals". The American Journal of Clinical Nutrition. 51 (2): 241–7. PMID 2305711. 4. Roza AM, Shizgal HM (1984) "The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass". The American Journal of Clinical Nutrition. 40 (1): 168–82. PMID 6741850. 5. Zhanatauov SU (1987) The inverse problem of the principal component analysis// Proc.of the 1-st World Congress of Soc. Math. Statist. and Probabillity Theory of Bernoulli. - Utrecht, 1987. - pp.116-119. 6. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. – J. Educ. Psychol., 1933, vol.24, pp. 417-441, pp. 498-520. 7. Zhanatauov SU (2014) Teorema-kriteriy ravenstva resheniy pryamoy i obratnoy zadach analiza glavnykh komponent. Evraziyskiy soyuz uchenykh. X mezhd. konf. «Sovrem. kontseptsii nauchnykh issled.». Moscow, 27-30 dekabrya 2014. pp. 55-58. 8. Zhanatauov SU (2013) The criterion of equality of solutions of the direct and inverse problems of the principal component analysis. «Seattle-2013: 4th International Academic Research Conference on Business, Education, Impact Factor: ISRA (India) = 1.344 ISI (Dubai, UAE) = 0.829 GIF (Australia) = 0.564 JIF = 1.500 SIS (USA) = 0.912 РИНЦ (Russia) = 0.234 ESJI (KZ) = 1.042 SJIF (Morocco) = 2.031 ICV (Poland) = 6.630 PIF (India) = 1.940 IBI (India) = 4.260 ISPC Education and Innovation, Scranton, USA 61 Nature and Technology». 4-5 November 2013, pp.447-449. 9. Zhanatauov SU (2011) Virtual'naya laboratoriya. Mater. Vserossiyskoy nauchno- prakticheskoy konf «Innovatsii v nauke-puti razvitiya» – Cheboksary: 2011. - pp.33-44. 10. Zhanatauov SU (1988) O funktsional'nom napolnenii PPP “Spektr”. Sitemnoe modelirovanie - 13 . - Novosibirsk , 1988, pp.3- 11. 11. Shepel' VN, Akimov SS (2014) Modernizatsiya metoda gistogramm dlya vyyavleniya prinadlezhnosti neizvestnogo massiva dannykh opredelennomu zakonu raspredeleniya veroyatnostey. Vestnik OGU №9, 2014, pp. 179-181. Impact Factor: ISRA (India) = 1.344 ISI (Dubai, UAE) = 0.829 GIF (Australia) = 0.564 JIF = 1.500 SIS (USA) = 0.912 РИНЦ (Russia) = 0.234 ESJI (KZ) = 1.042 SJIF (Morocco) = 2.031 ICV (Poland) = 6.630 PIF (India) = 1.940 IBI (India) = 4.260 ISPC Education and Innovation, Scranton, USA 62 SOI: 1.1/TAS DOI: 10.15863/TAS International Scientific Journal Theoretical & Applied Science p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online) Year: 2016 Issue: 11 Volume: 43 Published: 03.11.2016 http://T-Science.org Viktor Zakharchuk Head of geodetic group, Stikon Ltd. Odessa, Ukraine zvlxxx@gmail.com Vita Zakharchuk Assistant Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine tzvvxxx@gmail.com Alexandr Nakhmurov Professor Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine nakhmurov09@rambler.ru Natalia Shyshkalova Assistant professor Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine shishkalova7@mail.ru Rostyslav Yurkovskyi Professor Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine adhimaratma@gmail.com SECTION 8. Architecture and construction. ACCURACY OF DETERMINATION OF THE MARKING NETWORK COORDINATES Abstract: External geodetic network is created on the construction site for rendering in nature the main or center marking axis of buildings (structures), fixing their design parameters, implementation of detailed layout works and executive surveys. The possibility of using the electronic total stations Sokkia 610 and 3Та5Р for determination of the planned position of geodetic points of the external marking net on the building site is being studied. For that theoretical accuracy of determination of geodetic points’ coordinates is being compared. The accuracy is calculated on the basis of the nameplate data of the instruments and real values of mean squared errors of the coordinates’ determination by these devices by the polar method on the construction site. Key words: accuracy, marking network, geodetic points, electronic total station, coordinates. Language: English Citation: Zakharchuk V, Zakharchuk V, Nakhmurov A, Shyshkalova N, Yurkovskyi R (2016) ACCURACY OF DETERMINATION OF THE MARKING NETWORK COORDINATES. ISJ Theoretical & Applied Science, 11 (43): 62-64. Soi: http://s-o-i.org/1.1/TAS-11-43-12 Doi: http://dx.doi.org/10.15863/TAS.2016.11.43.12 Introduction Increase in volumes of construction works for different purposes and their rising complication demands increase of requirements for engineering and geodetic support, its rationalization and acceleration while maintaining necessary accuracy. External geodetic marking networks is always the original basis of such provision. They are necessary for all processes of engineering maintenance of territory, construction and exploitation of various objects and structures, ranging from surveying, multifactor design, siting and ending with the respective control in the operation of everything created by this project. The fully recognized principle of such networks' creating is a gradual transition from general to specific and from highly precise measurements to the lower once. The transfer of the project on site is preceded by surveying, when marking linear and angular elements are calculated by the coordinates of the network points to define the location of themrelatively to the points of the state geodetic planned basis. Meanwhile, depending on the chosen layout method the angular Impact Factor: ISRA (India) = 1.344 ISI (Dubai, UAE) = 0.829 GIF (Australia) = 0.564 JIF = 1.500 SIS (USA) = 0.912 РИНЦ (Russia) = 0.234 ESJI (KZ) = 1.042 SJIF (Morocco) = 2.031 ICV (Poland) = 6.630 PIF (India) = 1.940 IBI (India) = 4.260 ISPC Education and Innovation, Scranton, USA 63 and linear data must be prepared to be set on the ground from the state geodetic network’s points,. The points of the state geodetic network are the basic framework for marking network’s constructing. They are established by the techniques of triangulation, trilateration, polygonometry or satellite. These points are fixed on the ground by the underground centers of various structures laid to a depth of 0.5 m below the maximum freezing depth to avoid seasonal variations in sign. The special metal marks-hemispheres with a hole-center inside are put in the upper part of the centres. The coordinates of this center are to be determined. If necessary the special exterior signs are placed above the centers to provide visibility in observations from nearby points. Theoretical basis for design of the multi-step instructions is research in ensuring of the measurement errors’ distribution patterns and the cumulative impact of these errors on overall accuracy. Basic research If these questions are deeply studied for geodetic networks of different accuracy classes, many important accuracy regulations of the multibit planned engineering-geodetic marking networks have still not been provided. Requirements for their accuracy are specified in the State Building Codes of Ukraine DBN.1.3-2010 "Geodetic works in construction". Let’s consider provision of this accuracy when using electronic total stations Sokkia 610 and 3Та5Р for determination of the planned position of the external marking network’s points. Coordinates of these points were determined by the polar method from points of the State geodetic network, by measuring with the total station of: - the angle between the initial side (baseline) connecting the points of the State geodetic network, and direction on the defined point of the external marking network; - the distance d up to this point. Moreover, in choosing location of the external network’s center point the angle must be less than 90°, the distance d should not exceed the length of the basis. Theoretically, mean squared errors of measurements by these devices are [1,2]: For the total station 3Та5Р: horizontal angle " " 5 m , vertical angle " " 7 V m , slope distance 6 (5 3 10 ) D m D mm . For the Sokkia Set 610 total station: horizontal angle "" 6 m vertical angle "" 6 V m slope distance 5 (5 5 10 ) D m D mm . Since the horizontal distance is determined by the formula v D d cos , (1) then its mean squared deviation is 2 2 2 2 2 2 sin cos v D d m v D m v m (2) For the studied object distance D between the marking network’s points are equal to 10-100 m, and the vertical angles v constitute from 0 0 to 25 0 . Then for D max = 100 m, the mean squared error for the total station 3Та5Р is: d m 5,3 mm for angle v = 0 0 , and d m 5,0 mm for angle v = 25 0 . For the Sokkia SET610 total station: d m 5,0 mm for angle v = 0 0 , and d m 5,1 mm for angle v = 25 0 . Thus, the mean squared error of determining the horizontal distance for the total station 3Та5Р does not exceed mm 3 . 5 . For the Sokkia SET610 total station it does not exceed mm 1 . 5 . Coordinates are calculated by the formulas: sin cos d y d х (3) Hence their standard errors are respectively equal to 2 2 2 2 2 2 2 2 2 2 2 2 cos sin sin cos m d m m m d m m d y d x (4) The total station 3Та5Р: When d = 100 m for = 0 0 the maximum value is x m 5, 3 mm, and for = 25 0 the ultimate meaning is y m 5,3 mm. The Sokkia Set 610 total station: When d = 100 m for = 0 0 the maximum value is x m 5, 1 mm, and for = 25 0 the ultimate meaning is y m 5,1 mm. Under influence of the errors x m and y m accuracy of determination of the planned position of the marking network’s point is: 2 2 2 y x m m М (5) or according to the formulas (4): 2 2 2 2 2 m d m М d (6) Impact Factor: ISRA (India) = 1.344 ISI (Dubai, UAE) = 0.829 Download 19.82 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling