Тест саволлар 8- sinf


Download 74.5 Kb.
bet1/2
Sana09.04.2023
Hajmi74.5 Kb.
#1345865
  1   2
Bog'liq
Математика 50 талик (2)


Математика тest savollari
(1-ДИМИ Г.Исламова,Қ.Абдурахмонов)

3x+y=45

z+3y=-15 bo’lsa, x+y+z nimaga teng?

3z+x=6
1. agar {

a) 12; b) 10; c) 15; d) 9; e) 7.





2x-3y=3

X+2y=5
2. x ni to’ping {
a) 1; b) 2; c) 3; d) -2; e) -1.

y-3x=-5

bo’lsa x2+ y2 ning qiymatini to’ping

5x+2y=23




3. Agar { a) 16; b) 25; c) 9; d) 20; e) 36.

4. Tenglamani nechta ildizi bor? |x|=|2x-5|


a) 1; b) 2; c) 3; d) cheksiz ko’p; e) ildizi yo’q.

5. m ning qanday qiymatlarida |m+1|= m+1 tenglik o’rinli bo’ladi?


a) m =-1; b) m є R; c) m =0; d) m > -1; e) m ≥ -1.

6. Tengsizlik nechta butun yechimga ega |x-2| ≤ 5


a) 11; b) 10; c) 8; d) 7; e) 6.

7. Tengsizlikni qanoatlantiradigan natural sonlarning eng kattasi topilsin: |3x-7| <5


a) 4; b) 3; c) 2; d) 1; e) 5.

8. k ning qanday qiymatida y=kx+6 funksiyaning grafigi m(0.5; 4.5) nuqtadan o’tadi.


a) 3; b) -3; c) -2; d) 4; e) 30.

9. Quydagi nuqtalardan qaysi biri f(x)=-2x+5 funksiyasining grafigiga tegishli?


a) (1;2) b) (2;1); c) (3;1); d) (2;3); e) (1;-3).

10. Ikkita to’g’ri chiziqning kesishishidan hosil bolgan uchta burchakning yig’indisi 3150 ga teng. Shu burchaklardan kichigini to’ping.


a) 600; b) 450; c) 700; d) 850; e) 500.

11. Ikkita to’g’ri chiziqning kesishishidan hosil bo’lgan burchakning kattaliklari nisbati 7:3 ga teng. Shu burchaklardan kichigini to’ping.


a) 630; b) 510; c) 570; d) 480; e) 540.

12. Uzunligi 4.2 ga teng kesmani 3:4 kabi nisbatga bo’ling.


a) 1,2 va 3; b) 1,3 va 2,9; c) 1,4 va 2,8; d) 1,8 va 2,4; e) 2 va 2,2.

13. Agar kvadratning perimetri 10% ga kamaytirilsa, uning yuzi necha foizga kamayadi?


a) 10; b) 11; c) 16; d) 19; e) 8.
14. To’g’ri to’rtburchak shaklidagi maydonning bo’yi 32m. Agar shu maydonning yuzi 2 gektar bo’lsa, uning bo’yi necha m bo’ladi?
a) 610; b) 615; c) 620; d) 625; e) 630.

15. To’g’ri to’rtburchakning bo’yi 20% va eni 10%ga ortirilsa uning yuzi necha foizga ortadi?


a) 30; b) 20; c) 27; d) 32; e) 35.

16. Rombning diagonallarini 3:4 kabi nisbatda, yuzi esa 384ga teng. Uning tomonini toping.


a) 18; b) 20; c) 24; d) 28; e) 30.

17. Rombning yuzi 18ga, diagonallaridan biri 9ga teng. Ikkinchi diagonalining uzunligi qanchaga?


a) 3,5; b) 5; c) 4,5; d) 4; e) 6.

18. Tomoni 10ga va kichik diagonali 12ga teng bolgan rombning yuzini to’ping.


a) 102; b) 94; c) 98; d) 104; e) 96.

19. Trapetsiyaning kichik asosi 4sm. O’rta chizig’I katta asosidan 4 sm qisqa. Trapetsiyaning o’rta chizig’ini to’ping.


a) 6; b) 10; c) 8; d) 9; e) 12.

20. Hisoblang: 109*9,17-5,37*72-37*9,17+1,2*72


a) 360 b) 370 c) 460 d) 470 e) 480

21. Tekislikdan 12 sm. Uzoqlikda turgan A nuqta orqali bu tekkislikka uzuligi 37 sm.ga teng bo’lgan AB o’g’ma o’tkazilgan. AB o’g’maning tekislikdagi proeksiyasini to’ping.


a) 10; b) 15; c) 25; d) 35; e) 53.

22. A va B to’g’ri chiziqlar bitta tekislikda yotadi. A va B to’g’ri chiziqlar:


A) kesishadimi? B) parallel bo’ladimi? C) kesishmaydi hamda parallel bo’laolmaydi.
a) xa.xa. yoq; b) xa,yoq,xa; c) yo’q, yoq,xa; d) yoq,xa,yoq.

23. k- ning qanday eng kichik butun qiymatida x2-2(k+3)x+20+k2=0 tenglama ikkita turli haqiqiy ildizlarga ega bo’ladi?


a) k=3; b) k=2; c) k=1; d) k=-2; e) k=-1.

24. Uchburchakning ikkita tomoni 0,5 va 7,9 ga teng. Uchinchi tomonining uzunligi butun son ekanligi bilgan holda, shu tomonni to’ping.


a) 7 sm; b) 9 sm; c) 8 sm; d) 10 sm; e) 5 sm.

25. y=1-2sin2x funksiyaning qiymatlar to’plamini to’ping.


a) [0;2]; b) [1;3]; c) [-1;1]; d) [-2;0]; e) [-2;2].
26. x2+6x+5<0 tengsizlikning barcha yechimlari yig’indisini to’ping.
a) 10; b) 9; c) -9; d) -10; e) -15.

27. Tengsizlikni yechimini to’ping |2x-1|≥ |3x+1|


a) (-∞;-2] v [0;+ ∞); b) (-∞;-2]; c) (0; ∞); d) [-2;0]; e) (-2; ∞).

28. Agar to’g’ri burchakli uchburchakning balandligi gipotenuzani 6 sm va 54 sm lik kesmalarga ajratadi. Bu uchburchakning yuzini toping.


a) 648 b) 324 c) 1080 d) 540 e) 640

29. Rombga aylana ichki chizilgan. Agar rombning o’tkir burchagi 670 bo’lsa, aylana tomonlariga urinish nuqtalari bilan qanday to’rt bo’lakka bo’linadi?


a) 1120 va 680; b) 1130 va 670; c) 1100 va 700; d) 1200va 600; e) 1140 va 660.
30. teng yonli trapetsiyaning asoslari 10 sm va 16 sm , yon tomoni esa 5 sm trapetsiyaning yuzini to’ping.
a) 45sm2; b) 50 sm2; c) 48sm2; d) 52 sm2; e) 54 sm2.

31. Funksiyalarning qaysilari toq funksiya?


1) y=6x; 2) y=3√x; 3) y=4x+7; 4) y=2x3-10.
a) 2,4; b) 2,3; c) 3,4; d) 1,4; e) 1,2.

32. Hisoblang: √3√64.


a) 8; b) √2; c) 2√2; d) -2; e) 2.

33. Hisoblang: 4√84√16.


a) 2; b) -2; c) 4√2; d) 8; e) 4√8.

34. Hisoblang: 3√-13√8.


a) 2; b) -2; c) 3√-4; d) 6√32; e) 3√4.

35. a=125 bo’lganda √a: 6√a ifodaning son qiymatini toping:


a) -25; b) 15; c) -5; d) 5; e) 25.

36. a=0,04 bo’lganda 3√a* 6√a ifodaning son qiymatini toping:


a) 0,08; b) 3√0,4; c) 0,4; d) -0,2; e) 0,2.

37. Sonlarni o’shish tartibida joylashtiring: a=√2, b=3√3, c=6√7.


a) c>a>b; b) c>b>a; c) b>a>c; d) a>b>c; e) b>c>a.

38. Sonlarni kamayish tartibida joylashtiring: a=3√2, b=4√3, c=6√5


a) a>b>c; b) b>c>a; c) c>a>b; d) b>a>c; e) c>b>a.

39. Tengsizlikni yeching: 2x2-8≤0.


a) -2≤x≤2; b) -2≤x; c) x≥2; d) 0≤x≤4; e) -2≤x≤4.

40. Tengsizlikni yeching: -3x2+27≥0.


a) x≤3; b) |x|≤3; c) x≥3; d) 0≤x≤9; e) -3≤x≤0.

41. Tengsizlikni yeching: 3x2-9≥0.


a) x<√3; b) x>√3; c) x<-√3, x>√3, d) x≥3; e) x<3.

42. Tengsizlikni yeching: x2+7x≥0.


a) x>0; b) x>7; c) 0

43. Tengsizlikni yeching: -x2+3x≤0.


a) x>3; b) x≥0; c) 0

44. Tengsizlikni yeching: (x+3)(x-4) >0.


a) x<-3, x>4; b) -34, d) x<-3; e) 0

45. Tengsizlikni yeching: (x-1)(x+7)<0.


a) x>-7; b) -71, d) x<-7, x>1; e) -1

46. x2+6x+5<0 tengsizlikning barcha butun yechimlari yig’indisini toping.


a) 10; b) 9; c) -9, d) -10; e) -15.

47. p –ning nechta butun qiymatida x2+px+9=0 tenglama haqiqiy ildizga ega emas?


a) 10; b) 8; c) 13, d) 12; e) 11.

48. k –ning qanday eng kichik butun qiymatida x2-2(k+3)x+20+k2=0 tenglama ikkita turli haqiqiy ildizlarga ega bo’ladi?


a) k=3; b) k=2; c) k=1, d) k=-2; e) k=-1.

49. a –ning qanday qiymatida ax2-8x-2<0 tengsizlik x – ning barcha qiymatlarida o’rinli bo’ladi?


a) -8-8.

50. b –ning shunday qiymatini topingki, y=3X2 parabola bilan y=2x+b to’g’ri chiziqning kesishish nuqtalaridan birining abssissasi x=1 bo’lsin.


a) b=2; b) b=-1; c) b=1, d) b=-2; e) b=3.



Savol


Download 74.5 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling