The Digital Transformation Playbook: Rethink Your Business for the Digital Age
Download 1.53 Mb. Pdf ko'rish
|
The-Digital-Transformation-Playbook-Rethink-Your-Business-for-the-Digital-Age-PDFDrive.com-
Big Data Is Really Unstructured Data
Traditionally, a firm’s data processes were based on analyzing structured data—the kind of data sets that fill a database with neatly organized rows and columns (e.g., with addresses of customers, inventories of products, or expenses and debits of various financial accounts). But the big-data era has been marked by the profusion of new types of unstructured data—information that is recorded but doesn’t fit easily into neat forms. A business may have access to the ungrammatical text posts of social media, the flood of smartphone-generated images, real-time mapping and location signals, or the data from sensors rapidly spreading over our bodies and our entire world; all these types of data are rich in meaning—but difficult to parse by familiar tools like spreadsheets. One of the biggest sources of unstructured data is social media. As over a billion users worldwide participate in networks like Facebook, Twitter, and Weibo, they are constantly producing vast amounts of data in the form of their posts, comments, and updates. This social data is attitudinal (what people are saying can capture their opinions, likes, and dislikes) and can be used to measure affinity (whom they friend, follow, or link to reflects social ties and allows businesses to infer relationships between them and oth- ers in their network). And this data is real-time and continuous, allowing businesses to analyze shifts in opinion, sentiment, and conversation with precise longitudinal detail. Because of this, numerous organizations have sought to gain insight from the analysis of social data. Brands monitor their reputation over time based on what customers are saying, the Centers for Disease Control uses social media to help track the spread of flu and influ- enza, Hollywood predicts the opening weekend performance of new mov- ies based on the social “chatter” after opening night, and economists have even used social media to effectively predict stock market performance. Another new kind of unstructured data is location data. The data being generated by mobile devices like smartphones comes with geolocation markers, which provide a continuous record of where we are and where we’re going in real time. The inclusion of location data with other kinds of behavioral data adds tremendous additional context. Increasingly, search engine results are shaped not just by the words we are using in our search but also by where we are when we search. (If we Google the word pizza, we are likely to be shown the closest establishments, with links to their phone numbers and addresses, instead of pizza history or recipes.) Research by T U R N D A T A I N T O A S S E T S 99 my colleague Miklos Sarvary has shown that the patterns of where we go at various times of the week (as measured by our phones) reveal a great deal about who we are. By analyzing these “co-location” patterns, Sarvary and his coauthors were able to show that customers with similar location “foot- prints” were likely to buy similar products and could be effectively targeted for marketing based on that data alone. 6 The biggest emerging source of unstructured data is the sensors that are becoming embedded in everything around us as we shift to a world of truly ubiquitous networks. By 2020, Cisco expects that over 50 billion devices will be connected and sharing information over the Internet—and the vast majority of these devices will not be computers, smartphones, or Web servers. This phenomenon, known as the Internet of Things, encompasses smart automobiles, factories and product supply chains, and lightbulbs and home appliances as well as sensors embedded in the watches and clothing we wear and in the medicines we ingest. Together, all of these applications will soon result in billions of devices transmitting and generating new sets of data that can be put to business use. For example, GE has installed sen- sors on its jet engines that allow the engines to continuously post updates on their status and operating details. (GE calls the system “Facebook for jet engines.”) This real-time data lets airline mechanics monitor the status of critical aircraft equipment so they can make repairs when they actually are needed rather than on a schedule of estimated need. This makes fleet main- tenance more efficient and makes air travel cheaper and more convenient. Download 1.53 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling