The Digital Transformation Playbook: Rethink Your Business for the Digital Age
Download 1.53 Mb. Pdf ko'rish
|
The-Digital-Transformation-Playbook-Rethink-Your-Business-for-the-Digital-Age-PDFDrive.com-
Myth 2: Correlation Is All That Matters
Spotting a pattern is not (always) enough. Some commenters on big data have reported that data science is no longer concerned with causation, just correlation. The belief is that underlying patterns across data sets are a truth unto themselves that does not need to rely on foggy human ideas of cause and effect. T U R N D A T A I N T O A S S E T S 103 This is simply not true. It is critically important that managers understand the difference between simple correlation and causation—and know when this differ- ence matters and when it doesn’t. A simple rule of thumb: if you are only making predictions, data correlation is sufficient. But if you are looking to change the precondition, you need to know there is causation as well. Think of Stringer, the city comptroller who discovered the data correlation between declining budgets for tree pruning and rising lawsuits against the city. If the tree-pruning budgets weren’t actually causing the accidents that led to lawsuits, his decision to restore the pruning budget would not have helped. In Stringer’s case, causality mattered a great deal. On the other hand, imagine your ad agency has determined that married women in Ohio are more responsive to advertisements for your new hair care product. You are not going to try to grow your shampoo sales by encouraging Ohioans to get married (that would be influencing the precondition). You are just going to use this information to target more of your ads to married Ohioans instead of single ones. In a case like this, simply knowing a data correlation is fine. Myth 3: All the Good Data Is Big Data It would be a mistake to conflate big data with data strategy. In many cases, com- panies can build valuable data assets and apply them to strategic ends without delving into the messy world of big data. Data does not always need to be “big” (i.e., unstructured) in order to be useful to a business. Powerful insights can be derived from the analysis and application of traditional, more structured data such as customer clickstream behavior (Where do customers click on a website, scroll down the page, spend more or less time, put things in shopping carts, etc.?). Even at a big-data powerhouse like Facebook, home to some of the biggest server clusters in the world, most queries run by engineers on a given day are of a scale that could be processed on a good laptop. 8 The point of your data strategy should be to generate value for your customers and business. Sometimes that will involve big data, and sometimes it won’t. Where to Find the Data You Need As you begin to put together a data strategy, you will start with the data you are generating in your own business processes. However, you will likely identify gaps in the data you need for some of your goals. Finding the right additional sources of data is critical to filling in gaps and building your data 104 T U R N D A T A I N T O A S S E T S asset over time. Important sources of data from outside your organization include customer data exchanges, lead users, supply chain partners, public data sets, and purchase or exchange agreements. Customer Value Data Exchange One of the best ways to generate additional data is to invite customers to contribute data as part of interacting with your business or in direct exchange for value you offer them. As mentioned in chapter 2, the navigation app Waze built both its map data and its real-time traffic data through user con- tributions. Waze was designed from the beginning around generating data. Whenever a customer has the app turned on, it is pinging their phone’s GPS once a second. In densely populated areas, this approach provides excep- tional real-time awareness of traffic conditions and allows for superior rerouting compared to competitors’ apps. (After it reached 30 million users, Waze was bought by Google for $1.3 billion.) Because it does not sell directly to consumers, Coca-Cola historically has had little consumer data. But with the help of its MyCokeRewards loyalty program, the company has built up a data view on 20 million of its customers, the linchpin of its data asset. The Metropolitan Museum of Art was able to gather 100,000 new, valid e-mail addresses simply by asking visitors for their e-mail addresses in exchange for access to the Met’s free Wi-Fi. What makes consumers willing to share their information with businesses? In a global research study that I conducted at Columbia University with Matt Quint, we observed four key factors: the type of value or rewards offered, the presence of a trusted relationship with the business, the type of data being requested, and the industry of the business. 9 Download 1.53 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling