2-teorema. y = ƒ(x) egri chiziqning M( ; ) nuqtasiga o`tkazilgan urinmasining tenglamasi
y − = ƒ′( )(x − x ) (3)
ko’rinishda bo’ladi, bu yerda = ƒ( ).
Isbot. Urinma tenglamasini topish uchun to’g’ri chiziqning y = kx + b
tenglamasidagi k va b larni aniqlash kerak. (2) ga asosan:
k = ƒ′( ).
b ni topish uchun urinmaning M(x0 ; y0 ) nuqta orqali o’tishidan foydalanamiz. Bu esa M( ; ) nuqtaning koordinatalari to’g’ri chiziq tenglamasini qanoatlantirishi kerakligini bildiradi, ya’ni
= k + b.
Bundan: b = − k = − ƒ′( ) .
k va b ning topilgan qiymatlarini to’g’ri chiziq tenglamasiga qo’ysak, egri chiziqning M( ; ) nuqtasidan o’tuvchi urinma tenglamasi hosil bo’ladi:
y − = ƒ′( )(x − ).
1-misol. y = 2 − 2 parabolaning absissalari mos ravishda = 1, = −2 = 0 bo’lgan nuqtalariga o’tkazilgan urinmalarning burchak koeffitsientlari topilsin.
Yechish. y = 2 − 2 funksiyaning hosilasini topamiz.
1) x ga ∆x orttirma beramiz:
y + ∆y = 2 − 2;
2) ∆y = 2 − 2 − (2 − 2) = 4x∆x + 2∆ ;
3) 4) =4x
Demak, y = 2 − 2 funksiyaning hosilasi: y’ = 4x. x = 1 bo’lganda
urinmaning burchak koeffitsienti: k = y’(1) = 4 ∙ 1 = 4; x = −2 da esa k = y’(−2) = 4 ∙ (−2) = −8; x = 0 nuqtada k = y’(0) = 4 ∙ 0 = 0.
Do'stlaringiz bilan baham: |