Уравнение Шредингера


Download 100.25 Kb.
bet3/7
Sana09.06.2023
Hajmi100.25 Kb.
#1475692
1   2   3   4   5   6   7
Bog'liq
Уравнение Шредингера

3Гармонический осциллятор
Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид



(11)

В этом случае одномерное уравнение Шредингера имеет вид



(12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,

(13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме
Одномерная прямоугольная яма шириной L:
n = 1, 2, …

Одномерный гармонический осциллятор:
En = ћω0(n + 1/2), n = 0, 1, 2,

4Частица в поле с центральной симметрией
В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид



(14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),

(15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

2Ylm(θ,φ) = ћ2l(l +1)Ylm(θ,φ)

(16)

или

Ylm(θ,φ) = ћ2l(l +1)Ylm(θ,φ)


 (17)

Уравнение (4.16) определяет возможные собственные значения и собственные функции Ylm(θ,φ) оператора квадрата момента  2. Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 3Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ2/mee2 ≈ 0.529·108 cм.

Решения уравнения

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.


Download 100.25 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling