Xosmas integral Reja


> restart; > with(plots)


Download 87.8 Kb.
bet3/3
Sana15.06.2023
Hajmi87.8 Kb.
#1479914
1   2   3
Bog'liq
Xosmas integral

> restart;
> with(plots):
Warning, the name changecoords has been redefined
> plot(1/sqrt(abs(x*(x^2-1))), x=-6..6, y=-1..10,color= blue, thickness=2);

Demak, (8) ga asosan

Integral osti funksiyasi juftligidan

tengliklar, ular mabjud bo`lgan taqdirda, o`rinlidir (12.7) ga asosan
1)
ko`rinishda yozib olamiz. U holda
a)

yaqinlanuvchi.


Xosmas integralnin geometrik masalalarga tadbiqi


6-misol. Anyezi chziq zulfi va abtsissalar o`qi orasida joylashgan yuzani hisoblang.
Yechish. Yuz elimenti: .
Izlanayotgan yuza qiymati integrallash chegaralari cheksiz bo`lgan xosmas integralga teng:

> restart;
> with(plots): f:=x->8/(x^2+4):
> plot({f(x)}, x=-6..6, y=0..2,color=red, style=line, thickness=2, title=`YUZA`);

> XI1:=int( a^3/(x^2+a^2), x=-infinity..infinity );

> a:=2:XI1;
7-misol. strofoida va uning asimptotasi bilan chegaralangan yuzani hisoblang.
Yechish. Yuz elimenti: .
Izlanayotgan yuza qiymati uzlykli funktsiyadan olingan xosmas integralga teng:

Integralostidagi funktsiya x=2a nuqtada uzilishga ega. Bu integralda
x=2asin2t , dx=4a sint cost, a≤x2a dan π/4≤t≤ π/2
ga o`tib quyidagi yechimni topamiz:

Strofoida grafigini uning parametrik tenglamasi x=1+sinφ, y=(1+sinφ) sinφ/cosφ asosida quramiz:
> with(plots):
> plot([1*(1+sin(t)), 1*(1+sin(t))*sin(t)/cos(t), t=0..2*Pi], 0..4, -4..4, color=blue,thickness=2,title=`Strofoida`);
Download 87.8 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling