Xosmas integrallarning yaqinlashtirish alomatlari. Xosmas integralga doir mashqlar


> int( 1/(1+x^2), x=-infinity..infinity )


Download 69.42 Kb.
bet2/3
Sana09.06.2023
Hajmi69.42 Kb.
#1470461
1   2   3
Bog'liq
XOSMAS INTEGRALLARNING YAQINLASHTIRISH ALOMATLARI.XOSMAS INTEGRALGA DOIR MASHQLAR

> int( 1/(1+x^2), x=-infinity..infinity );


2. Integrallash oralig`i chekli bo`lib integral osti funksiya
chegaranmagan hol


1 . Aytaylik, f(x) funksiya [a;b) oraliqda uzluksiz bo`lib, oraliqning o`ng uchida cheksiz katta, ya`ni f(b-0)= bo`lsin. U holda b-[a;b) shartni qanoatlantiruvchi har bir musbat  uchun aniq integral mabjuddir. Agar +0 da bu integralning chekli limiti mabjud bo`lsa, bu limit f(x) funksiyaning [a;b) oraliq bo`yicha xosmas integrali deyilib, bilan belgilanadi. Bu belgilash aniq integral belgisidan farq qilmaydi, ammo bu yerda f(x) integrallash oralig`ida chegaralanmagan ekanligini unutmaslik kerak.
Demak, ta`rif bo`yicha
. (5)
2-misol. integral hisoblansin.
Yechish. da uzluksiz , ammo f(1-0)=+ ya`ni cheksiz katta.
> restart;
> with(plots):
Warning, the name changecoords has been redefined
> plot(1/sqrt(1-x), x=-6..6, y=-1..10,color= blue, thickness=2);

Demak, bu integral xosmasdir.




> int( 1/sqrt(1-x), x=0..1); 2
2. Xuddi yuqoridagiga o`xshash f(x) funksiya (a;b] oraliqda uzluksiz bo`lib, f(a+0)= bo`lsa, xosmas integralni
(6)
ko`rinishda ta`riflaymiz.
3. Agar f(x) funksiya (a;b) oraliqda uzluksiz bo`lib f(a+0)=, f(b-0)= bo`lsa, c (a;b) ixtiyoriy nuqta yordamida xosmas integralni
(7)

ko`rinishda ta`riflaymiz.
3. Umumiy hol

Agar f(x) (a;b) oraliqning chetki va ba`zi bir ichki c12<…n (a;b) nuqtalarida ham cheksiz katta bo`lib, (ci-1;ci) oraliqlarning har birida uzluksiz bo`lsa, xosmas integralni


(8)
ko`rinishda ta`riflaymiz, bu yerda c0=a, cn+1=b deb qabul qilinadi. Bu yerda yana shuni ham aytamizki, (8) da a=-;b=+ bo`lishi ham mumkin va bu holda x da f(x) ning cheksiz katta bo`lishi talab qilinmaydi.
Eslatma. (5)- (8) xosmas integrallar uchun ham yuqorida ko`rilgan yaqinlashish belgilari o`z kuchida qoladi. (7) va (8) lar uchun bu belgilar har bir oraliqda alohida qaralishi lozimdir.
4-misol. xosmas integralning yaqinlashishi tekshirilsin.
Yechish. funksiya x1= -1, x2=0 va x3=1 nuqtalarda cheksiz kattadir, (-;-1) (-1;0), (0,1) va (1;+) oraliqning har birida uzluksizdir.

Download 69.42 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling