Что такое кэш? L1 vs L2 vs L3


Download 6.6 Mb.
bet1/3
Sana19.09.2023
Hajmi6.6 Mb.
#1681609
  1   2   3
Bog'liq
Что такое кэш 11


Что такое кэш? L1 vs L2 vs L3
В любом процессоре любого компьютера – от дешевого ноутбука до сервера в миллион долларов – есть то, что называется кэшем. И чаще всего он ещё и многоуровневый.
Должно быть, это что-то важное, иначе зачем бы это было? Но что оно делает, и зачем там несколько уровней? И что, вообще, значат всякие там множественно-ассоциативные 12-канальности?
Что же такое кэш?
Это небольшая, но очень быстрая память, которая находится рядом с логическими блоками процессора.
Но, конечно, такого определения нам недостаточно...
Представим себе идеальную волшебную систему хранения данных: бесконечно быструю, с бесконечным числом одновременных операций, и при этом обеспечивая абсолютную сохранность данных. Ничего подобного в реальности не существует, но если бы существовало, то устройство процессора было бы существенно проще.


Процессору было бы достаточно иметь только логические блоки для выполнения арифметических операций и систему для контроля передачи данных. Потому, что наша воображаемая система хранения мгновенно отправляет и получает все необходимые значения; ни один из логических блоков не задерживается в ожидании выполнения транзакции данных.
Но мы такими магическими технологиями хранения не обладаем. У нас есть лишь жесткие или твердотельные накопители, и даже лучшие из них не способны справиться с обработкой всех транзакций, необходимых для типичного процессора.

«Слон Мироздания» в мире хранения данных. Источник: techspot.com
Причина в том, что современные процессоры невероятно быстры – им требуется всего один такт, чтобы сложить два 64-битных целых числа, а для процессора, работающего на частоте 4 ГГц, это занимает всего 0,00000000025 секунды (четверть наносекунды).
В то время как вращающимся жестким дискам требуются тысячи наносекунд только для того, чтобы найти данные на внутренних дисках, не говоря уже об их передаче. Твердотельные накопители работают быстрее, но и им требуются десятки или сотни наносекунд.
Понятно, что такие накопители нельзя встроить внутрь процессора, а это означает, что между ними будет физическое разделение и, следовательно, понадобится больше времени на перемещение данных, что еще больше усугубляет ситуацию.



Итак, нам нужна еще одна система хранения данных, которая находилась бы между процессором и основным хранилищем. Она должна быть быстрее, чем диск, уметь обрабатывать большое количество транзакций одновременно и быть в непосредственной близости к процессору.
Что ж, у нас уже есть такая штука, и она называется RAM. Во всех компьютерах она используется как раз для этой цели.
Почти всегда это – DRAM (динамическая память с произвольным доступом), и она способна совершать обмен данными намного быстрее любого диска.




Однако, значительно превосходя в скорости, DRAM столь же значительно уступает в объёме хранимых данных.
Самые большие на сегодня чипы DDR4 (производства Micron, одного из немногих производителей DRAM) уступают самым большим по объёму жестким дискам примерно в 4000 раз.
Поэтому, увеличив скорость обмена данными, встала другая задача: с помощью аппаратных и программных решений определить, какие данные следует поместить в ограниченный объём DRAM, для оперативного пользования процессором.
Но по крайней мере, DRAM можно встроить в корпус процессора (встраиваемая DRAM, eDRAM). Однако процессоры относительно небольшие, поэтому особо внутри них не развернёшься.


10 Мб DRAM чип слева от графического процессора Xbox 360.


Подавляющее большинство модулей DRAM располагается на материнской плате рядом с процессором, и это всегда ближайший к процессору компонент в компьютерной системе. И всё равно это недостаточно быстро...
Опять же, для поиска данных DRAM требуется время около 100 наносекунд, но по крайней мере она может передавать миллиарды бит данных в секунду. Похоже, нам понадобится еще одна промежуточная память, между блоками процессора и DRAM.
Встречайте: SRAM (статическая память с произвольным доступом). В то время как DRAM использует микроскопические конденсаторы для хранения данных в виде электрического заряда, SRAM для той же цели использует транзисторы, работающие почти с той же скоростью, что и логические блоки в процессоре (примерно в 10 раз быстрее, чем DRAM).



Конечно, у SRAM есть недостаток, и опять же, речь об объёме.
Транзисторная память занимает намного больше физического места, чем DRAM: чип SRAM размером с чип DDR4 4 Гб будет иметь объём менее 100 Мб. Но поскольку технологически SRAM основана на том же процессе, что и процессор, то её можно встроить прямо внутрь него, в непосредственной близости к его логическим блокам.
Каждая такая дополнительная система памяти на пути к сверхбыстрым узлам процессора отличается повышенной скоростью в ущерб её объёму. Можно добавить больше таких систем, каждая из которых будет быстрее, но меньше.
И вот теперь мы можем дать более внятное определение, что такое кэш: это несколько модулей SRAM, расположенных внутри процессора. Они обеспечивают максимальную загрузку логических блоков, выполняя обмен данными на сверхвысоких скоростях. Этого достаточно? Отлично, потому что с этого момента все станет намного сложнее!
Кэш – это как многоуровневая парковка
Как мы выяснили, кэш необходим, потому что системы хранения данных неидеальны и не способны удовлетворить соответствующие требования логических блоков в процессоре. Современные CPU и GPU содержат массив блоков SRAM, которые внутренне организованы в иерархию – последовательность кэшей, упорядоченных следующим образом:



На этой схеме область процессора выделена черным пунктирным прямоугольником. Блоки ALU (арифметико-логическое устройство) находятся в крайнем левом углу; это те самые структуры, которые и делают процессор – процессором, выполняя математические вычисления. Ближайшим к ALU уровнем памяти являются регистры (они сгруппированы в файл регистров) – но технически они кэшем не являются.
Каждый из них содержит одно число, например 64-битное целое; само значение может быть фрагментом каких-то данных, кодом определенной инструкции, либо же ссылкой на адрес других данных.
Файл регистров в процессоре настольного компьютера довольно мал – например, в Intel Core i9-9900KF их на каждое ядро по два банка: один для целых чисел, содержащий 180 64-битных регистров, другой – для векторов (небольших массивов чисел), имеющий 168 256-битных регистров. Таким образом, общий файл регистров для каждого ядра чуть меньше 7 Кб. Для сравнения, размер файла регистров в потоковых мультипроцессорах (графических эквивалентах ядер CPU) в NVIDIA GeForce RTX 2080 Ti равен 256 Кб.
Регистры – это SRAM-память, как и кэш, но работающие на той же скорости, что и обслуживаемые ими ALU, вводя и выводя данные за один такт. Но они не предназначены для хранения большого количества данных (а только одного их фрагмента), поэтому поблизости всегда есть несколько блоков памяти побольше: это кэш уровня 1, L1 (Level 1).





Download 6.6 Mb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling